Int J Sports Med 2002; 23(4): 285-289
DOI: 10.1055/s-2002-29079
Training and Testing
© Georg Thieme Verlag Stuttgart · New York

Electromyographic Changes of Agonist and Antagonist Calf Muscles During Maximum Isometric Induced Fatigue

D.  Patikas1 , C.  Michailidis1 , H.  Bassa1 , C.  Kotzamanidis1 , S.  Tokmakidis2 , S.  Alexiou1 , D.  M.  Koceja3
  • 1Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
  • 2Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
  • 3Department of Health, Physical Education and Recreation, Motor Control Laboratory, Indiana University, Bloomington IN, USA
Further Information

Publication History



October 6, 2001

Publication Date:
14 May 2002 (online)

Abstract

The purpose of this study was to examine electromyographic changes of the agonist and antagonist muscles during fatigue. Nine healthy, untrained subjects exerted a maximum voluntary heel lifting contraction with their dominant limb. The EMG activity over the soleus and the tibialis anterior muscles was recorded during the contraction. The results showed that the torque output during heel lifting and the soleus EMG activity decreased, whereas the tibialis anterior EMG revealed a small but non-significant decrease. However, the ratio of the tibialis anterior to the soleus EMG increased significantly at the end of the fatigue protocol, a fact that reveals that the decrease rate of the antagonist's activity was significantly lower than the decrease rate of the agonist activity. It is concluded that during a maximal fatigue protocol, both the agonist and antagonist muscle activity may decline, however, the slower rate of antagonist's activity decrease relative to the agonist's activity is a finding that requires further investigation. This finding may reflect a higher level of agonist and antagonist muscle co-activation and probably a relatively higher opposing torque from the antagonist muscles at the end of the fatigue session.

References

  • 1 Baratta R V, Solomonow M R, Zhou B H, Zhu M. Methods to reduce the variability of EMG power spectrum estimates.  J Electromyogr Kinesiol. 1998;  8 279-285
  • 2 Basmajian J V, Blumenstein R. Electrode placement in electromyographic biofeedback. In: Basmajian JV (ed) Biofeedback Principles and Practice for Clinicians. Baltimore; Williams & Wilkins 1983: 369-382
  • 3 Bigland-Ritchie B F, Woods J J. Changes in muscle contractile properties and neural control during human muscular fatigue.  Muscle Nerve. 1984;  7 691-699
  • 4 Brooks V B. The Neural Basis of Motor Control. New York; Oxford University Press 1986
  • 5 de Luca C J, Mambrito B. Voluntary control of motor units in human antagonist muscles: co-activation and reciprocal activation.  J Neurophysiol. 1987;  5801 525-542
  • 6 de Luca C J, Merletti R. Surface myoelectric cross talk among muscles of the leg.  Electroencephalogr Clin Neurophysiol. 1988;  69 568-575
  • 7 de Vries H A. Method for evaluation of muscle fatigue and endurance from electromyographic fatigue curves.  Am J Phys Med Rehabil. 1968;  47 125-135
  • 8 Duchateau J, Hainaut K. Behaviour of short and long latency reflexes in fatigued human muscles.  J Physiol. 1993;  471 787-799
  • 9 Fitts R H, Metzger J M. Mechanisms of muscular fatigue. In: Poortmans JR (ed) Principles of Exercise Biochemistry. Basel; Karger 1993: 248-268
  • 10 Fuglevand A J, Zackoaski M M, Huey K A, Enoka R M. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces.  J Physiol. 1993;  460 549-572
  • 11 Fugl-Meyer A R, Sjöström M, Wählby L. Human plantar flexion strength and structure.  Acta Physiol Scand. 1979;  107 47-56
  • 12 Gandevia S C. Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive.  Acta Physiol Scand. 1998;  162 275-283
  • 13 Garland S J. Role of small diameter afferents in reflex inhibition during human muscle fatigue.  J Physiol. 1991;  435 547-558
  • 14 Gollhofer A, Komen P V, Fujitsuka N, Miyashita M. Fatigue during stretch-shortening cycle exercises. II. changes in neuromuscular activation patterns of human skeletal muscle.  Int J Sport Med. 1987;  8 S38-S47
  • 15 Grabiner M D, Koh T J, Miller G F. Fatigue rates of vastus medialis oblique and vastus lateralis during static and dynamic knee extension.  J Orthop Res. 1991;  9 391-397
  • 16 Grabiner M D, Weiker G. Anterior cruciate ligament injury and hamstrings co-activation.  Clinical Biomechanics. 1993;  8 215-219
  • 17 Grimby L, Hannerz J, Hedman B. The fatigue and voluntary discharge properties of single motor units in man.  J Physiol. 1981;  316 545-554
  • 18 Herzog W, Read L J, Keyrs J EJ. Experimental determination of force-length relations of intact human gastrocnemius muscles.  Clinical Biomechanics. 1991;  6 230-238
  • 19 Hortobagyi T, Lambert N J, Kroll W P. Voluntary and reflex responses to fatigue with stretch-shortening exercise.  Can J Sport Sci. 1991;  1641 142-150
  • 20 Hubley-Kozey C, Smits E. Quantifing synergist activation patterns during maximal plantarflexion using an orthogonal expansion approach.  Hum Movem Sci. 1998;  17 347-365
  • 21 Hutton R S, Nelson D L. Stretch sensitivity of Golgi tendon organs in fatigued gastrocnemius muscle.  Med Sci Sports Exerc. 1986;  18 69-74
  • 22 Jones D A. Muscle fatigue due to changes beyond the neuromuscular junction. In: Porter R, Whelan J (eds) Human Muscle Fatigue: Physiological Mechanisms. London; Pitman Medical 1981: 178-196
  • 23 Kellis E. Quantification of quadriceps and hamstring antagonist activity.  Sports Med. 1998;  25 37-62
  • 24 Kellis E. The effects of fatigue on the resultant joint moment, agonist and antagonist electromyographic activity at different angles during dynamic knee extension efforts.  J Electromyogr Kinesiol. 1999;  9 191-199
  • 25 Kukulka C G, Moore M A, Russel A G. Changes in human alpha-motoneurone excitability during sustained maximum isometric contractions.  Neurosci Lett. 1986;  68 327-333
  • 26 Löscher H W N, Cresswell A G, Thorstensson A. Recurrent inhibition of soleus α-motoneurons during a sustained submaximal plantar flexion.  Electroencephalogr Clin Neurophysiol. 1996;  101 334-338
  • 27 Macefield V G, Hagbarth K E, Gorman R B, Gandevia S C, Burke D. Decline in spindle support to α-motoneurones during sustained voluntary contractions.  J Physiol. 1991;  440 497-512
  • 28 Maganaris C N, Baltzopoulos V, Sargeant A J. Differences in human antagonistic ankle dorsiflexor co-activation between legs; can they explain the moment deficit in the weaker plantar flexor leg?.  Exp Physiol. 1998;  83 843-855
  • 29 Marsden C D, Meadows J C, Merton P A. Isolated single motor units in human muscle and their rate of discharge during maximal voluntary effort.  J Physiol. 1971;  217 12-13
  • 30 Moritani T, Muro M, Kijima A, Gaffney F A, Parsons D. Electromechanical changes during electrically induced and maximal voluntary contractions: surface and intramuscular EMG responses during sustained maximal voluntary contraction.  Exp Neurol. 1985;  88 484-499
  • 31 Nielsen J B, Kagamihara Y. The regulation of disynaptic reciprocal Ia inhibition during co-contraction of antagonistic muscles in man.  J Physiol. 1992;  456 373-391
  • 32 Nielsen J B, Kagamihara Y. The regulation of presynaptic inhibition during co-contraction of antagonistic muscles in man.  J Physiol. 1993;  464 575-593
  • 33 Nielsen J B, Sinkjaer T, Toft E, Kagamihara Y. Segmental reflexes and ankle joint stiffness during contraction of antagonistic ankle muscles in man.  Exp Brain Res. 1994;  102 350-358
  • 34 Psek J A, Cafarelli E. Behavior of coactive muscles during fatigue.  J Appl Physiol. 1993;  74 170-175
  • 35 Rothmuller C, Cafarelli E. Effect of vibration on antagonist muscle co-activation during progressive fatigue in humans.  J Physiol. 1995;  485.3 857-864
  • 36 Sale D G, Quinlan J, Marsh E, McComas A J, Belanger A. Influence of joint position on ankle plantarflexion in humans.  J Appl Physiol. 1982;  52 1636-1642
  • 37 Sherrington C S. Reciprocal innervation of antagonist muscles. Fourteenth note. On double reciprocal innervation.  Proc R Soc Lond Biol Sci. 1909;  91 249-268
  • 38 Sirin A V, Patla A E. Myoelectric changes in the triceps surae muscles under sustained contractions. Evidence of synergism.  Eur J Appl Physiol. 1987;  56 238-244
  • 39 Solomonow M R, Baratta R V, Bernardi M, Zhou B H, Lu Y, Zhu M, Acierno S. Surface and wire EMG crosstalk in neighboring muscles.  J Electromyogr Kinesiol. 1994;  4 131-142
  • 40 Solomonow M R, Baratta R V, Zhou B H, D’Ambrosia R. Electromyogram co-activation patterns of the elbow antagonist muscles during slow isokinetic movement.  Exp Neurol. 1988;  100 470-477
  • 41 Stephens J A, Taylor A. Changes in electrical activity during fatiguing voluntary isometric contraction of human muscle.  J Physiol. 1970;  207 5-6
  • 42 Stephens J A, Taylor A. Fatigue of maintained voluntary muscle contraction in man.  J Physiol. 1972;  220 1-18
  • 43 Tesch P A, Dudley G A, Duvoisin M R, Hather B M, Harris R T. Force and EMG signal during repeated bouts of concentric or eccentric actions.  Acta Physiol Scand. 1990;  138 263-271
  • 44 Winter D A, Fuglevand A J, Archer S. Crosstalk in surface electromyography: theoretical and practical estimates.  J Electromyogr Kinesiol. 1994;  4 15-26
  • 45 Woods J J, Furbush F H, Bigland-Ritchie B R. Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates.  J Neurophysiol. 1987;  5841 125-137

D. Patikas



Aggelionos 10 · 54351 Thessaloniki · Greece ·

Phone: +30-31-992179

Fax: +30-31-992179

Email: dpatikas@phed.auth.gr