Zusammenfassung
Im Gegensatz zu vielen anderen Geweben und Organen im Körper hat das Skelett eine
auffallende Potenz zur Regeneration. Die Heilung einer Knochenfraktur umfasst eine
komplizierte Cascade von Vorgängen auf zellulärem und biochemischen Niveau, welche
in einer kompletten strukturellen und funktionellen Wiederherstellung des betreffenden
Knochens endet. Gestörte Heilung tritt in 5 bis 10 % aller Frakturen auf, was erkennbar
ist als ein delayed union oder ein nonunion. Nonunions können klassifiziert werden
als hypertroph oder atroph, jedes mit spezifischen ursächlichen Faktoren. Diese Faktoren
sind wichtig, weil die ursächlichen Mechanismen die notwendige Behandlung diktieren.
Behandlungsmethoden, die die Frakturheilung stimulieren, können angewendet werden
bei delayed unions und nonunions. Zusätzlich können diese Methoden verwendet werden
bei der Behandlung von frischen Frakturen mit dem Ziel, die Heilungszeit zu verkürzen
und gestörte Heilung zu verhindern. Behandlungen, die die Knochenheilung stimulieren,
können eingeteilt werden in biologische, mechanische und biophysische Methoden.
In diesem Artikel werden der Frakturheilungsprozess, die ursächlichen Mechanismen
der gestörten Knochenheilung und Behandlung mit dem Ziel, die Frakturheilung zu stimulieren,
beschrieben. Die präsentierten Daten basieren auf der heutigen Literatur, und die
neuesten Entwicklungen im Bereich von stimulierter Knochenheilung sind berücksichtigt.
Abstract
In contrast to many other tissues and organs in the body, the skeleton has a striking
potential for regeneration. The healing of a bone fracture involves a complicated
cascade of events on a cellular and biochemical level, that ends in a complete structural
and functional restoration of the involved bone. Impaired healing occurs in 5 to 10
% of all fractures, which becomes evident as a delayed union or a nonunion. Nonunions
can be classified as hypertrophic or atrophic, each with specific causative factors.
These factors are important, because the mechanisms underlying impaired fracture healing
dictate the necessary treatment. Treatment methods, that enhance fracture healing,
can be applicated in delayed unions and nonunions. Furthermore, these methods can
be used in the treatment of fresh fractures in order to shorten the healing time and
to prevent impaired healing. Treatments that promote bone healing can be divided into
biological, mechanical, and biophysical methods.
In this paper, the fracture healing process, mechanisms underlying impaired bone healing,
and treatments aimed at enhancement of fracture healing are described. The presented
data are based on the current literature and include the newest developments in the
field of enhanced bone repair.
Schlüsselwörter
Frakturheilung - Verzögerte Knochenbruchheilung - Pseudoarthrose - Gesteigerte Knochenbruchheilung
Key words
Fracture healing - Delayed union - Nonunion - Enhanced bone repair
References
- 1
Andrew J G, Andrew S M, Freemont A J, Marsh D R.
Inflammatory cells in normal human fracture healing.
Acta Orthop Scand.
1994;
65
462-466
- 2
Barnes G L, Kostenuik P J, Gerstenfeld L C, Einhorn T A.
Growth factor regulation of fracture repair.
J Bone Miner Res.
1999;
14
1805-1815
- 3
Bauer T W, Muschler G F.
Bone graft materials. An overview of the basic science.
Clin Orthop.
2000;
371
10-27
- 4
Boden S D.
Bioactive factors for bone tissue engineering.
Clin Orthop.
1999;
367S
S84-S94
- 5
Brager M A, Patterson M J, Connolly J F, Nevo Z.
Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has
local and systemic effects on fracture healing in rats.
J Orthop Res.
2000;
18
133-139
- 6
Bruder S P, Fox B S.
Tissue engineering of bone. Cell based strategies.
Clin Orthop.
1999;
367S
S68-S83
- 7
Bucholz R W, Carlton A, Holmes R.
Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures.
Clin Orthop.
1989;
240
53-62
- 8
Buckwalter J A, Glimcher M J, Cooper R R, Recker R.
Bone biology. Part II: Formation, form, modeling, remodeling, and regulation of cell
function.
J Bone Joint Surg [Am].
1995;
77
1276-1289
- 9
Chapman M W, Buchholz R, Cornell C.
Treatment of acute fractures with a collagen-calcium phosphate graft material.
J Bone Joint Surg [Am].
1997;
79
495-502
- 10
Claes L, Heitemeyer U, Krischak G, Braun H, Hierholzer G.
Fixation technique influences osteogenesis of comminuted fractures.
Clin Orthop.
1999;
365
221-229
- 11
Connolly J F, Guse R, Tiedeman J, Dehne R.
Autologous marrow injection as a substitute for operative grafting of tibial nonunions.
Clin Orthop.
1991;
266
259-270
- 12
Einhorn T A.
Current concepts review. Enhancement of fracture-healing.
J Bone Joint Surg [Am].
1995;
77
940-956
- 13
Frankenburg E P, Goldstein S A, Bauer T W, Harris S A, Poser R D.
Biomechanical and histological evaluation of a calcium phosphate cement.
J Bone Joint Surg [Am].
1998;
80
1112-1124
- 14
Frost H M.
The biology of fracture healing. An overview for clinicians. Part I.
Clin Orthop.
1989;
248
283-293
- 15
Frost H M.
The biology of fracture healing. An overview for clinicians. Part II.
Clin Orthop.
1989;
248
294-309
- 16
Goodship A E, Kenwright J.
The influence of induced micromovement upon the healing of experimental tibial fractures.
J Bone Joint Surg [Br].
1985;
67
650-655
- 17
Grundnes O, Reikerås O.
Effects of instability on bone healing. Femoral osteotomies studied in rats.
Acta Orthop Scand.
1993;
64
55-58
- 18
Hak D J, Lee S S, Goulet J A.
Success of exchange reamed intramedullary nailing for femoral shaft nonunion or delayed
union.
J Orthop Trauma.
2000;
14
178-182
- 19
Heckman J D, Ryaby J P, McCabe J, Frey J J, Kilcoyne R F.
Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound.
J Bone Joint Surg [Am].
1994;
76
26-34
- 20
Henricson A, Hulth A, Johnell O.
The cartilaginous fracture callus in rats.
Acta Orthop Scand.
1987;
58
244-248
- 21
Holzer G, Majeska R J, Lundy M W, Hartke J R, Einhorn T A.
Parathyroid hormone enhances fracture healing. A Preliminary report.
Clin Orthop.
1999;
366
258-263
- 22
Hulth A.
Current concepts of fracture healing.
Clin Orthop.
1989;
249
265-284
- 23
Kenwright J, Richardson J B, Cunningham J L. et al .
Axial movement and tibial fractures. A controlled randomised trial of treatment.
J Bone Joint Surg [Br].
1991;
73
654-659
- 24 Kleinschmidt J C, Hollinger J O. Animal models in bone research. In: Habal MB,
Reddi AH (eds). Bone Grafts & Bone Substitutes. W. B. Saunders, Philadelphia, London,
Toronto, Montreal, Sydney, Tokyo 1992; 133 - 146
- 25
Lane J M, Tomin E, Bostrom M PG.
Biosynthetic bone grafting.
Clin Orthop.
1999;
367
107-117
- 26
Lane J M, Yasko A W, Tomin E. et al .
Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair.
Clin Orthop.
1999;
361
216-227
- 27
Marsh D.
Concepts of fracture union, delayed union, and nonunion.
Clin Orthop.
1998;
355S
S22-S30
- 28
McKibbin B.
The biology of fracture healing in long bones.
J Bone Joint Surg [Br].
1978;
60
150-162
- 29
Postacchini F, Gumina S, Perugia D, De Martino C.
Early fracture callus in the diaphysis of human long bones. Histologic and ultrastructural
study.
Clin Orthop.
1995;
310
218-228
- 30
Probst A, Spiegel H-U.
Cellular mechanisms of bone repair.
J Invest Surg.
1997;
10
77-86
- 31
Rosenthal R K, Folkman J, Glowacki J.
Demineralized bone implants for nonunion fractures, bone cysts, and fibrous lesions.
Clin Orthop.
1999;
364
61-69
- 32
Runkel M, Rommens P M.
Pseudarthrosen.
Unfallchirurg.
2000;
103
51-63
- 33
Rüter A, Mayr E.
Pseudarthrosen.
Chirurg.
1999;
70
1239-1245
- 34
Sakai R, Miwa K, Eto Y.
Local administration of activin promotes fracture healing in the rat fibula fracture
model.
Bone.
1999;
25
191-196
- 35
Scammell B E, Roach H I.
A new role for the chondrocyte in fracture repair: endochondral ossification includes
direct bone formation by former chondrocytes.
J Bone Miner Res.
1996;
11
737-745
- 36
Schmitz M A, Finnegan M, Natarajan R, Champine J.
Effect of smoking on tibial shaft fracture healing.
Clin Orthop.
1999;
365
184-200
- 37
Schweiberer L, Baumgart R, Deiler S t.
Die biologischen Bedingungen atropher und hypertropher Pseudarthrosen der Schaftknochen.
Ursachen und Erscheinungsbild.
Chirurg.
1999;
70
1193-1201
- 38
Scott G, King J B.
A prospective, double-blind trial of electrical capacitive coupling in the treatment
of non-union of long bones.
J Bone Joint Surg [Am].
1994;
76
820-826
- 39
Sharrard W JW.
A double-blind trial of pulsed electromagnetic fields for delayed union of tibial
fractures.
J Bone Joint Surg [Br].
1990;
72
347-355
- 40
Wu C C, Shih C H, Chen W J, Tai C L.
Effect of reaming bone grafting on treating femoral shaft aseptic nonunion after plating.
Arch Orthop Trauma Surg.
1999;
119
303-307
- 41
Younger E M, Chapman M W.
Morbidity at bone graft donor sites.
J Orthop Trauma.
1989;
3
192-195
Dr. Frank C. den Boer
Department of Surgery
VU University Medical Centre
P.O. Box 70 57
1007 MB Amsterdam
The Netherlands
Phone: +31-20-44 402 68
Fax: +31-20-44 402 74
Email: frankdenboer@hotmail.com