Subscribe to RSS
DOI: 10.1055/s-2002-30633
© Georg Thieme Verlag Stuttgart · New York
The Use of Calcium Phosphates as a Bone Substitute Material in Trauma Surgery
Publication History
Publication Date:
17 May 2002 (online)
Abstract
Bone defects caused by trauma can be filled with calcium phosphates. A variety of materials based on calcium phosphate composite are developed and investigated. The clinical use is essentially based on the good biocompatibility with bone tissue and the osteoconductive properties of these materials. Recently new materials are investigated for new applications. The combination of calcium phosphates and osteoinductive substances such as bone marrow and bone morphogenetic proteins are main topics of current research of bone substitutes. To achieve complete restoration of bone architecture, fully resorbable bone substitute materials are developed and clinically tested for treatment of bone defects. This article reports the latest promising developments in the use of calcium phosphates in surgery of trauma.
Key words
Calcium phosphates - Bone substitute material - Trauma
Schlüsselwörter
Calciumphosphat - Knochenersatzmaterial - Traumatologie
References
- 1 Blokhuis T J, Den Boer F C, Bramer J. et al . Evaluation of strength of healing fractures with dual energy X-ray absorptiometry. Clin Orthop. 2000; 380 260-268
- 2 Bucholz R W. Clinical experience with bone graft substitutes. J Orthop Trauma. 1987; 1 260-262
- 3 Bucholz R W, Carlton A, Holmes E. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Amer. 1987; 18 323-324
- 4 Bucholz R W, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop. 1989; 240 53-62
- 5 Cockin J. Autologous bone grafting; complications at the donor site. J Bone Joint Surg [Br]. 1971; 53 153
- 6 Den Boer F C, Bramer J A, Patka P. et al . Quantification of fracture healing with three-dimensional computed tomography. Arch Orthop Trauma Surg. 1998; 117 345-350
- 7 Den Boer F C, Patka P, Bakker F C. et al . New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry. J Orthop Res. 1999; 17 654-660
- 8 Den Boer F C, Patka P, Haarman H JThM. Bone induction using bone growth factors: bone morphogenetic proteins. Ned Tijdschr Geneeskd. 1996; 140 2390-2394
- 9 Dhert W JA. Retrieval studies on calcium phosphate-coated implants. Med Prog Technol. 1994; 2 143
- 10 Gao T J, Linholm T S, Kommonen B, Ragni P. et al . Enhanced healing of segmental tibial defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and type 4 collagen. J Biomed Mater Res. 1996; 32 505-512
- 11 Goad M EP, Aiolova M, Tofighi A, Jacobs M, Lee D. Resorbable apatitic bone substitute material. Alpha-BSM is associated with rapid bone regrowth in defects of rabbit tibias. J Bone Miner Res. 1997; 12 (Suppl) 518
- 12 Grob D. Autologous bone transplantation: problems at the donor site. Unfallchirurg. 1986; 83 339-345
- 13 Guicheux J, Heymann D, TdQcane M, Gautier H, Faivre A, Daculsi G. Association of human growth hormone and calcium phosphate by dynamic compaction: in vitro biocompatibility and bioactivity. J Biomed Mater Res. 1997; 36 258-264
- 14 Grimandi G, Weiss P, Miller F, Daculsi G. In vitro evaluation of a new injectable calcium phosphate material. J Biomed Mater Res. 1998; 33 660-666
- 15 Hamanishi C, Kitamoto K, Ohura K, Tanaka S, Doi Y. Self setting, bioactive, and biodegradable TTCP-DCPD apatite cement. J Biomed Mater Res. 1996; 32 383-389
- 16 Hott M, Benoit N, Bernache-Assolant D, Rey C, Marie P J. Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. J Biomed Mater Res. 1997; 37 508-516
- 17 Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop. 1981; 157 259-278
- 18 Klein C PAT, Patka P, Wolke J GC. et al . Long-term in vivo study of plasma sprayed coatings on titanium alloys of TetraCP, HA and α-TCP. Biomaterials. 1994; 15 146-150
- 19 Lee D, Tofighi, Aiolova M. et al . α-BSM®: a biomimetic bone substitute and drug delivery vehicle. Clin Orthop. 1999; 367S 396-405
- 20 Leichter I, Loch B. Evaluation of the calcium phosphate ceramic implant by non-invasive techniques. Biomaterials. 1992; 13 478-482
- 21 Martin R B, Chapman M W, Sharkey N A, Zissimos S L, Bay B, Shors E C. Bone ingrowth and mechanical properties of corraline hydroxyapatite 1 year after implantation. Biomaterials. 1993; 14 314-348
- 22 Maruyama M. Hydroxyapatite clay used to fill the gap between implant and bone. J Bone Joint Surg [Br]. 1995; 77 213-228
- 23 Oghushi H, Goldberg V M, Caplan A I. Repair of bone defects with marrow cells and porous ceramics. Acta Orthop Scand. 1989; 60 334-339
- 24 Patka P. Bone replacement by calcium phosphate ceramics. An experimental study (thesis). Free University 1984
- 25 Patka P, Haarman H JThM, Elst vander M. Bone substitution and bone repair in trauma surgery. In: Wise D et al (eds). Encycl. handbook of biomaterials and bioengineering. Dekker, NY 1995; 639-663
- 26 Patka P, Haarman H JThM, Bakker F C. Bone transplantation and bone replacement materials. Ned Tijdschr Geneeskd. 1998; 142 893-896
- 27 Schwartz Z, Braun G, Kohavi D. et al . Effects of hydroxy-apatite implants on primary mineralization during rat tibial healing: Biochemical and morphometric analyses. J Biomed Mater Res. 1993; 27 1029-1083
- 28 Suh H, Lee C. Biodegradable ceramic-collagen composite implantated in rabbit tibiae. ASAIO J. 1995; 41 652-656
- 29 Spector M. Anorganic bovine bone and ceramic analogs of bone mineral as implants to facilitate bone regeneration. Clin Plast Surg. 1994; 21 437-444
- 30 Takechi M, Miyamoto Y, Ishikawa K. et al . Effects of added antibiotics on the basis properties of anti-wash-out-type fast setting calcium phosphate cement. J Biomed Mater Res. 1998; 39 308-316
- 31 Wang W, Ferguson D JP, Quinn J MW, Simpson A HRW, Athanasou N A. Biomaterial particle phagocytosis by bone-resorbing osteoclasts. J Bone Joint Surg [Br]. 1997; 79 849-856
- 32 Wippermann B W, Schratt H E, Donow C, Den Boer F C. α-BSM® und Hydroxylapatitkeramik granulat (HA) in einem Tibiasegmentdefekt beim Schaf. In: Oestern HJ, Rehm KE (eds). Abstractband der 61. Jahrestagung der Deutschen Gesellschaft für Unfallchirurgie. Springer 1997; 839-841
F. W. BloemersM.D.
VU Medisch Centrum
De Boelelaan 1117
Postbus 70 57
1007 MB Amsterdam
The Netherlands
Phone: +31-20-4 44 02 68
Fax: +31-20-4 44 02 74
Email: FWBloemers@Hotmail.com