Subscribe to RSS
DOI: 10.1055/s-2002-32038
The Renin-Angiotensin System and Vascular Disease in Diabetes
Publication History
Publication Date:
06 June 2002 (online)

ABSTRACT
Angiotensin II, the effector molecule of the renin-angiotensin system, has profound effects on endothelial and smooth muscle cells. These effects are not only hemodynamic in nature, but also comprise inflammation, thrombosis, and cell proliferation through stimulation of production of cytokines and growth factors. In diabetes mellitus these effects seem amplified with adverse consequences like atherosclerosis and occlusive microangiopathy. Suggestive evidence for this notion is the impressive beneficial effect of pharmacological interference with the renin-angiotensin system in large vessel disease as well as in renal and retinal microangiopathy. Since the circulating renin-angiotensin system does not seem to be activated in diabetes mellitus it is now thought that independent tissue renin-angiotensin systems play a role in diabetic complications. Whether any genetic propensity to diabetic angiopathy resides in genes of the renin-angiotensin system remains to be determined.
KEYWORDS
Renin - angiotensin - diabetes - vascular disease
REFERENCES
- 1 Borch-Johnsen K, Kreiner S. Proteinuria: value as predictor of cardiovascular mortality in insulin dependent diabetes mellitus. BMJ (Clin Res Ed) . 1987; 294 1651-1654
- 2 Fuller J H, Head J. Blood pressure, proteinuria and their relationship with circulatory mortality: the WHO Multinational Study of Vascular Disease in Diabetics. Diabete Metab . 1989; 15 273-277
- 3 Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet . 2000; 355 253-259
- 4 Chaturvedi N, Sjolie A K, Stephenson J M. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet . 1998; 351 28-31
- 5 United Kingdom Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. U.K. Prospective Diabetes Study Group. BMJ . 1998; 317 713-720
- 6 Ravid M, Lang R, Rachmani R. Long-term renoprotective effect of angiotensin converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med . 1996; 156 286-289
- 7 Toffelmire E B, Slater K, Corvol P. Response of plasma prorenin and active renin to chronic and acute alterations of renin secretion in normal humans. Studies using a direct immunoradiometric assay. J Clin Invest . 1989; 83 679-687
- 8 Hsueh W A, Baxter J D. Human prorenin. Hypertension . 1991; 17 469-477
- 9 Deinum J, Derkx F H, Schalekamp M A. Probing epitopes on human prorenin during its proteolytic and non-proteolytic activation. Biochim Biophys Acta . 1998; 10 386-396
- 10 Itoh H, Mukoyama M, Pratt R E. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest . 1993; 91 2268-2274
- 11 Pueyo M E, Michel J B. Angiotensin II receptors in endothelial cells. Gen Pharmacol . 1997; 29 691-696
- 12 Berk B C. Angiotensin II signal transduction in vascular smooth muscle: pathways activated by specific tyrosine kinases. J Am Soc Nephrol . 1999; S62-68 (S62-68)
- 13 Horiuchi M, Akishita M, Dzau V J. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension . 1999; 33 613-621
- 14 Burns K D. Angiotensin II and its receptors in the diabetic kidney. Am J Kidney Dis . 2000; 36 449-467
- 15 Admiraal P J, Derkx F H, Danser A H. Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension . 1990; 15 44-55
- 16 Deschepper C F, Mellon S H, Cumin F. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci USA . 1986; 83 7552-7556
- 17 Danser A H, Admiraal P J, Derkx F H. Cardiac renin is kidney-derived. J Hypertens Suppl . 1993; S224-S225 (S224-S225)
- 18 Admiraal P J, van Kesteren A C, Danser A H. Uptake and proteolytic activation of prorenin by cultured human endothelial cells. J Hypertens . 1999; 17 621-629
- 19 Morganti A, Pelizzola D, Mantero F. Immunoradiometric versus enzymatic renin assay: results of the Italian Multicenter Comparative Study. Italian Multicenter Study for Standardization of Renin Measurement. J Hypertens . 1995; 13 19-26
- 20 Bjorck S. The renin angiotensin system in diabetes mellitus. A physiological and therapeutic study. Scand J Urol Nephrol Suppl . 1990; 126 1-51
- 21 Luetscher J A, Kraemer F B, Wilson D M. Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications. N Engl J Med . 1985; 312 1412-1417
- 22 Franken A A, Derkx F H, Man in't Veld J A. High plasma prorenin in diabetes mellitus and its correlation with some complications. J Clin Endocrinol Metab . 1990; 71 1008-1015
- 23 Deinum J, Ronn B, Mathiesen E. Increase in serum prorenin precedes onset of microalbuminuria in patients with insulin-dependent diabetes mellitus. Diabetologia . 1999; 42 1006-1010
- 24 Seikaly M G, Arant Jr S B, Seney Jr D F. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest . 1990; 86 1352-1357
- 25 Gilbert R E, Cooper M E. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury?. Kidney Int . 1999; 56 1627-1637
- 26 Metzger R, Bohle R M, Pauls K. Angiotensin-converting enzyme in non-neoplastic kidney diseases. Kidney Int . 1999; 56 1442-1454
- 27 Lai K N, Leung J C, Lai K B. Gene expression of the renin-angiotensin system in human kidney. J Hypertens . 1998; 16 91-102
- 28 Price D A, Porter L E, Gordon M. The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol . 1999; 10 2382-2391
- 29 Singh R, Alavi N, Singh A K. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes . 1999; 48 2066-2073
- 30 Kelly D J, Wilkinson-Berka J L, Allen T J. A new model of diabetic nephropathy with progressive renal impairment in the transgenic (mRen-2)27 rat (TGR). Kidney Int . 1998; 54 343-352
- 31 Campbell D J, Kelly D J, Wilkinson-Berka J L. Increased bradykinin and ``normal'' angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney Int . 1999; 56 211-221
- 32 Sramek S J, Wallow I H, Tewksbury D A. An ocular renin-angiotensin system. Immunohistochemistry of angiotensinogen. Invest Ophthalmol Vis Sci . 1992; 33 1627-1632
- 33 Wagner J, Jan Danser H A, Derkx F H. Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br J Ophthalmol . 1996; 80 159-163
- 34 Berka J L, Stubbs A J, Wang D Z. Renin-containing Müller cells of the retina display endocrine features. Invest Ophthalmol Vis Sci . 1995; 36 1450-1458
- 35 Danser A H, van den Dorpel A M, Deinum J. Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy. J Clin Endocrinol Metab . 1989; 68 160-167
- 36 Le Noble A F, Hekking J W, Van Straaten W H. Angiotensin II stimulates angiogenesis in the chorio-allantoic membrane of the chick embryo. Eur J Pharmacol . 1991; 195 305-306
- 37 Williams B. A potential role for angiotensin II-induced vascular endothelial growth factor expression in the pathogenesis of diabetic nephropathy?. Miner Electrolyte Metab . 1998; 24 400-405
- 38 Lewis E J, Hunsicker L G, Bain R P. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med . 1993; 329 1456-1462
- 39 The ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors?. <~>A meta-analysis of individual patient data. Ann Intern Med . 2001; 134 370-379
- 40 The EUCLID Study Group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet . 1997; 349 1787-1792
- 41 Bohlen L SM, De Courten M, Weidmann P. Comparative study of the effect of ACE inhibitors and other antihypertensive agents on proteinuria in diabetic patients. In: Mogensin CE, ed. The Kidney and Hypertension in Diabetes Mellitus 3rd ed. London: Kluwer Academic Publishers; 1997
- 42 United Kingdom Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. U.K. Prospective Diabetes Study Group. BMJ . 1998; 317 703-713
- 43 Mogensen C E, Neldam S, Tikkanen I. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the candesartan and lisinopril microalbuminuria (CALM) study. BMJ . 2000; 321 1440-1444
- 44 Chan J C, Critchley J A, Tomlinson B. Antihypertensive and anti-albuminuric effects of losartan potassium and felodipine in Chinese elderly hypertensive patients with or without non-insulin-dependent diabetes mellitus. Am J Nephrol . 1997; 17 72-80
- 45 Adler A I, Stratton I M, Neil H A. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ . 2000; 321 412-419
- 46 Endlich K, Muller C, Barthelmebs M. Role of shear stress in nitric oxide-dependent modulation of renal angiotensin II vasoconstriction. Br J Pharmacol . 1999; 127 1929-1935
- 47 Prasad A, Tupas-Habib T, Schenke W H. Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis. Circulation . 2000; 101 2349-2354
- 48 Bech J N, Svendsen K B, Nielsen C B. The systemic and renal response to NO inhibition is not modified by angiotensin-II-receptor blockade in healthy humans. Nephrol Dial Transplant . 1999; 14 641-647
- 49 Zusman R M. Effects of converting-enzyme inhibitors on the renin-angiotensin-aldosterone, bradykinin, and arachidonic acid-prostaglandin systems: correlation of chemical structure and biologic activity. Am J Kidney Dis . 1987; 10(1 suppl 1) 13-23
- 50 Williams B, Baker A Q, Gallacher B. Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension . 1995; 25 913-917
- 51 Rosenberg G A, Kornfeld M, Estrada E. TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res . 1992; 576 203-207
- 52 Lovett D H, Johnson R J, Marti H P. Structural characterization of the mesangial cell type IV collagenase and enhanced expression in a model of immune complex-mediated glomerulonephritis. Am J Pathol . 1992; 141 85-98
- 53 Ebihara I, Nakamura T, Shimada N. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am J Kidney Dis . 1998; 32 544-550
- 54 Sorbi D, Fadly M, Hicks R. Captopril inhibits the 72 kDa and 92 kDa matrix metalloproteinases. Kidney Int . 1993; 44 1266-1272
- 55 Funakoshi Y, Ichiki T, Ito K. Induction of interleukin-6 expression by angiotensin II in rat vascular smooth muscle cells. Hypertension . 1999; 34 118-125
- 56 Sun Y, Zhang J, Zhang J Q. Local angiotensin II and transforming growth factor-β1 in renal fibrosis of rats. Hypertension . 2000; 35 1078-1084
- 57 Pueyo M E, Gonzalez W, Nicoletti A. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol . 2000; 20 645-651
- 58 Andersen S, Schalkwijk C G, Stehouwer C D. Angiotensin II blockade is associated with decreased plasma leukocyte adhesion molecule levels in diabetic nephropathy. Diabetes Care . 2000; 23 1031-1032
- 59 Rossing P, Rossing K, Jacobsen P. Unchanged incidence of diabetic nephropathy in IDDM patients. Diabetes . 1995; 44 739-743
- 60 Quinn M, Angelico M C, Warram J H. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia . 1996; 39 940-945
- 61 Marre M, Bernadet P, Gallois Y. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes . 1994; 43 384-388
- 62 Tarnow L, Cambien F, Rossing P. Lack of relationship between an insertion/deletion polymorphism in the angiotensin I-converting enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes . 1995; 44 489-494
- 63 Doria A, Warram J H, Krolewski A S. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I-converting enzyme gene. Diabetes . 1994; 43 690-695
- 64 Chowdhury T A, Dronsfield M J, Kumar S. Examination of two genetic polymorphisms within the renin-angiotensin system: no evidence for an association with nephropathy in IDDM. Diabetologia . 1996; 39 1108-1114
- 65 Schmidt S, Schone N, Ritz E. Association of ACE gene polymorphism and diabetic nephropathy?. <~>The Diabetic Nephropathy Study Group. Kidney Int . 1995; 47 1176-1181
- 66 Penno G, Chaturvedi N, Talmud P J. Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients: findings from the EUCLID Randomized Controlled Trial. EURODIAB Controlled Trial of Lisinopril in IDDM. Diabetes . 1998; 47 1507-1511
- 67 Deinum J, Tarnow L, van Gool M J. Plasma renin and prorenin and renin gene variation in patients with insulin-dependent diabetes mellitus and nephropathy. Nephrol Dial Transplant . 1999; 14 1904-1911
- 68 Tarnow L, Cambien F, Rossing P. Angiotensin-II type 1 receptor gene polymorphism and diabetic microangiopathy. Nephrol Dial Transplant . 1996; 11 1019-1023
- 69 Tarnow L, Cambien F, Rossing P. Angiotensinogen gene polymorphisms in IDDM patients with diabetic nephropathy. Diabetes . 1996; 45 367-369
- 70 Doria A, Onuma T, Warram J H. Synergistic effect of angiotensin II type 1 receptor genotype and poor glycaemic control on risk of nephropathy in IDDM. Diabetologia . 1997; 40 1293-1299
- 71 Tarnow L, Kjeld T, Knudsen E. Lack of synergism between long-term poor glycaemic control and three gene polymorphisms of the renin angiotensin system on risk of developing diabetic nephropathy in type I diabetic patients. Diabetologia . 2000; 43 794-799