Subscribe to RSS
DOI: 10.1055/s-2002-32226
© Georg Thieme Verlag Stuttgart · New York
Vergleich von Gradienten-Echo und steady state free precession Sequenzen zur 3D-Navigator-
MR-Koronarangiographie
Comparison of gradient-echo and steady state free precession sequences for 3D-navigator MR angiography of coronary arteries
Publication History
Publication Date:
13 June 2002 (online)

Zusammenfassung
Zielsetzung: Vergleich von steady state free precession (SSFP) und Gradienten-Echo (GE) 3D-Navigator-Sequenzen zur Darstellung der Koronararterien. Material und Methode: 8 Probanden und 12 Patienten wurden an einem 1,5 T-System (Magnetom Sonata, Siemens AG, Erlangen) kernspintomographisch untersucht. Die Darstellung des Koronarsystems erfolgte jeweils mit einer 3D-Navigator-GE- (TR 5,8 ms, TE 2,2 ms, FL 25 °) und einer 3D-Navigator-SSFP-Sequenz (TR 3,9 ms, TE 1,7 ms, FL 65 °) in identischer Schichtposition. Die Auflösung in der Bildebene betrug 0,9 × 0,7 mm2. Aus Signalintensitätsmessungen im Gefäßlumen; im Myokard und im epikardialen Fettgewebe wurden die Kontrast-Rausch-Verhältnisse (KRV) berechnet. Ergebnisse: Die SSFP-Technik (147 ± 36) zeigt im Vergleich zur GE-Sequenz (103 ± 36) eine signifikant höhere Signalintensität im Gefäßlumen; Fettgewebe und Myokard zeigten keine signifikanten Unterschiede. Trotz des höheren Bildrauschens der SSFP-Sequenz (9,3 ± 1,4) im Vergleich zur GE-Technik (5,3 ± 0,9) ist das KVR zum Myokard (7,8 ± 3,7 gegenüber 3,4 ± 3,3) bei SSFP um den Faktor 2 größer, während das KRV zum Fettgewebe keine signifikanten Unterschiede zwischen den Sequenzen zeigte (12 ± 5 versus 13 ± 4). Schlussfolgerungen: Durch die höhere Signalintensität im Gefäß, den besseren Kontrast zum Myokard und die schnellere Datenakquisition ist die SSFP-Technik eine interessante Alternative zu GE-Sequenzen bei der MR-Koronarangiographie.
Abstract
Aim: Purpose of our study was to compare the image quality of 3D-navigator steady state free precession (SSFP) and gradient echo (GE) sequences for magnetic resonance coronary angiography (MRCA) in volunteers and patients. Methods: Following informed consent 8 volunteers and 12 patients were included into this study. In all subjects a 3D navigator MRCA of the right and the left coronary artery was performed with a SSFP (TR 3.9 ms, TE 1.7 ms, FA 65 °, bandwidth 540 Hz) and a GE (TR 5.8 ms, TE 2.2 ms, FA 25 °, bandwidth 200 Hz) sequence using a 1.5 T-MR-System (Magnetom Sonata, Siemens Erlangen). The slice thickness was 1.5 mm and the in-plane resolution was 0.9 × 0.7 mm2 for all measurements. Results: The blood pool showed a significantly (p < 0.01) higher signal intensity on SSFP images (147 ± 36) compared to GE images (103 ± 36). Although noise increased with SSFP (9.3 ± 1.4 versus 5.3 ± 0.9), the contrast-to-noise ratio between myocardium and the coronaries was significantly (p < 0.01) higher on SSFP images (7.8 ± 3.7 versus 3.4 ± 3.3). The CNR between the coronaries and the epicardial fat showed no significant differences (12 ± 5 versus 13 ± 4). Conclusion: The 3D-navigator SSFP sequence is a promising new technique for MRCA which improves the contrast between the coronaries and the myocardium and shortens the data acquisition compared to gradient-echo imaging.
Schlüsselwörter
Magnetresonanz-Tomographie - Magnetresonanz-Angiographie - Koronararterien - Schnelle Bildgebung
Key words
Magnetic resonance imaging - Magnetic resonance angiography - Coronary Arteries - Fast imaging
Literatur
- 1 Tuomilehto J, Kuulasmaa K, Torppa J. WHO MONICA Project: geographic variation in mortality from cardiovascular diseases. Baseline data on selected population characteristics and cardiovascular mortality. World Health Stat Q. 1987; 40 171-184
- 2 Enbergs A, Burger R, Reinecke H, Borggrefe M, Breithardt G, Kerber S. Prevalence of coronary artery disease in a general population without suspicion of coronary artery disease: angiographic of subjects aged 40 to 70 years referred for catheter ablation therapy. Eur Heart J. 2000; 21 45-52
- 3 Lee T H, Boucher C A. Clinical practice. Noninvasive tests in patients with stable coronary artery disease. N Engl J Med. 2001; 344 1840-1845
-
4 Bruckenberger E.
Herzbericht 2000 mit Transplantationschirurgie, 13. Bericht des Krankenhausausschusses der AOLG. Hannover; 2001 -
5 Davidson C.
Cardiac catheterization. In: Braunwald E (ed) Heart Disease. 5 ed. Philadelphia; WB Saunders 1992: 177-203 - 6 Achenbach S, Giesler T, Ropers D, Ulzheimer S, Derlien H, Schulte C, Wenkel E, Moshage W, Bautz W, Daniel W G, Kalender W A, Baum U. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation. 2001; 103 2535-2538
- 7 Moshage W, Ropers D, Daniel W G, Achenbach S. Nichtinvasive Darstellung von Koronararterien mittels Elektronenstrahltomographie (EBCT). Z Kardiol. 2000; 89 15-20
- 8 Cohnen M, Poll L, Puttmann C, Ewen K, Modder U. Strahlenexposition bei der Mehrschicht-Spiral-CT des Herzens. Fortschr Röntgenstr. 2001; 173 295-299
- 9 Debatin J F, Hany T F. MR-based assessment of vascular morphology and function. Eur Radiol. 1998; 8 528-539
- 10 Goyen M, Ruehm S G, Debatin J F. MR-angiography: the role of contrast agents. Eur J Radiol. 2000; 34 247-256
- 11 Ho V B, Prince M R, Dong Q. Magnetic resonance imaging of the aorta and branch vessels. Coron Artery Dis. 1999; 10 141-149
- 12 Grist T M. MRA of the abdominal aorta and lower extremities. J Magn Reson Imaging. 2000; 11 32-43
- 13 Achenbach S, Ropers D, Regenfus M, Pohle K, Giesler T, Moshage W, Daniel W G. Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed tomography, and multislice computed tomography. Am J Cardiol. 2001; 88 70 E-73 E
- 14 Barkhausen J, Ruehm S G, Goyen M, Buck T, Laub G, Debatin J F. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001; 219 264-269
- 15 Achenbach S, Ropers D, Holle J, Muschiol G, Daniel W G, Moshage W. In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology. 2000; 216 457-463
- 16 Hofman W B, Wickline S A, Lorenz C H. Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging. 1998; 8 568-576
- 17 Wang Y, Vidan E, Bergman G W. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. 1999; 213 751-758
- 18 Deshpande V S, Shea S M, Laub G, Simonetti O P, Finn J P, Li D. 3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries. Magn Reson Med. 2001; 46 494-502
- 19 Stuber M, Botnar R M, Danias P G, McConnell M V, Kissinger K V, Yucel E K, Manning W J. Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging. 1999; 10 790-799
- 20 Wielopolski P A, van Geuns R J, de Feyter P J, Oudkerk M. Coronary arteries. Eur Radiol. 2000; 10 12-35
- 21 Li D, Zheng J, Bae K T, Woodard P K, Haacke E M. Contrast-enhanced magnetic resonance imaging of the coronary arteries. A review. Invest Radiol. 1998; 33 578-586
- 22 Li D, Zheng J, Weinmann H J. Contrast-enhanced MR imaging of coronary arteries: comparison of intra- and extravascular contrast agents in swine. Radiology. 2001; 218 670-678
- 23 Manning W J, Li W, Edelman R R. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med. 1993; 328 828-832
- 24 Kim W Y, Danias P G, Stuber M, Flamm S D, Plein S, Nagel E, Langerak S E, Weber O M, Pedersen E M, Schmidt M, Botnar R M, Manning W J. Coronary Magnetic Resonance Angiography for the Detection of Coronary Stenoses. N Engl J Med. 2001; 345 1863-1869
- 25 Achenbach S, Daniel W G. Noninvasive Coronary Angiography - An Acceptable Alternative?. N Engl J Med. 2001; 345 1909-1910
Dr. Jörg Barkhausen
Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Essen
Hufelandstraße 55
45122 Essen
Phone: + 49-201-7231522
Fax: + 49-201-7235682
Email: joerg.barkhausen@uni-essen.de