Zusammenfassung
Die Aktivierung dünner sensorischer Nervenfasern durch noxische Reize bewirkt eine Freisetzung der Neuropeptide Substanz P und Calcitonin Gene-related Peptide, CGRP, aus den peripheren Nervenendigungen. Diese Neuropeptide und nachfolgend freigesetzte Mediatoren rufen am Ort der noxischen Reizung ein Ödem, eine Hyperämie und ferner ein Erythem hervor, dessen Ausdehnung über die Reizstelle hinausgeht (sog. flare response). Da diese Entzündungszeichen von der Funktion und Integrität peripherer sensorischer Neurone abhängen, wurde diese Reaktion neurogene Entzündung genannt. Da fast alle Gewebe von Säugern, inklusive dem Menschen, von afferenten nozizeptiven Neuronen innerviert sind, kann diese neurogene Entzündung überall im Körper auftreten. Obgleich seit mehr als einem Jahrhundert bekannt war, dass an dieser Reaktion, die mit antidromer Vasodilatation, Axonreflex, triple response, neurogener Entzündung beschrieben wurde, sensorische Afferenzen beteiligt sind, rückte die neurogene Entzündung erst in den vergangenen zwanzig Jahren als ein physiologisch und pathophysiologisch relevanter Prozess ins Bewusstsein. Eine Vielzahl endogener und exogener Substanzen können sensorische Nervenendigungen aktivieren und sensibilisieren und somit Schmerz oder eine nozizeptive Reaktion und eine neurogene Entzündung auslösen. Es wurde eine große Zahl pharmakologisch unterschiedlicher Substanzen und Mediatorantagonisten gefunden, die die neurogene Entzündung modulieren oder vermindern. Von besonderem Interesse sind hierbei Capsaicin und andere Agonisten und Antagonisten am Vanilloidrezeptor, da sie nozizeptive Neurone desensibilisieren und somit eine neurogene Entzündung vermindern oder gar verhindern können.
Abstract
Activation of sensory unmyelinated neurons by noxious stimuli evokes the release of neuropeptides, such as substance P and calcitonin gene-related peptide (CGRP) from peripheral nerve endings. These neuropeptides and subsequently released mediators cause a local oedema, hyperaemia and an erythema which extends beyond the site of stimulation (so-called flare response). Since these inflammatory signs depend on the function and integrity of peripheral sensory nervous systems, the response has been termed neurogenic inflammation. Due to the fact that nearly all tissues in mammals including humans are innervated by afferent sensory neurons, this neurogenic inflammation can occur ubiquitously throughout the body. Albeit first evidence showing that sensory neurons contribute to the inflammatory signs, described as antidromic vasodilatation, axon reflex, triple response, neurogenic inflammation, elicited at the level of tissue that they innervate was first obtained more than one hundred years ago, it was in the last two decades that inflammation caused by the release of neuropeptides from afferent nerve endings was recognised as a physiologically and pathologically relevant process. A large number of exogenous and endogenous substances and autacoids may stimulate or sensitise sensory nerve endings, thus simultaneously producing pain and nociceptive responses, as well as neurogenic inflammation. On the basis of recent research a variety of pharmacological substances and antagonists of putative mediators have been identified to modulate or suppress neurogenic inflammation, thus providing a rationale for therapeutical strategies for various diseases in which neurogenic inflammation is suggested to be involved. Among them, capsaicin and other newly developed agonists and antagonists at the vanilloid receptor have attracted particular attention, since they were found to be capable of desensitizing nociceptive nerve structures and thus of preventing development of neurogenic inflammation or even of abolishing an ongoing inflammatory process.
Schlüsselwörter
Neurogene Entzündung - nozizeptive Nervenfasern - Axonreflex - Substanz P - CGRP
Keywords
Neurogenic inflammation - Sensory nerve fibres - Axon reflex - Substance P - CGRP
Literatur
1 Perl E R. Mode of action of nociceptors. In: Hirsch C, Zotterman Y (eds) Cervical Pain. Pergamon, Oxford 1992: 157-164
2 Burgess P R, Perl E R. Cutaneous mechanoreceptors and nociceptors. Iggo A (ed) Somatosensory System. Springer, Berlin 1973
3 Lewis T. The Blood Vessels of the Human Skin and their Responses. Shaw and Sons, London 1927
4
Lewis T.
Experiments relating to cutaneous hyperalgesia and its spread through somatic nerves.
Clin Sci.
1936;
2
373-423
5
Bruce N A.
Über die Beziehung der sensiblen Nervenendigungen zum Entzündungsvorgang.
Arch exp Pathol Pharmakol.
1910;
63
424-433
6
Jancsó N, Jancsó-Gabor A, Szolcsnyi J.
Direct evidence for neurogenic inflammation and its prevention by denervation and pretreatment with capsaicin.
Br J Pharmacol Chemother.
1967;
31
138-151
7
Stricker S.
Untersuchungen über die Gefässwurzel des Ischiadicus.
Ber Akad Wiss Wien.
1876;
3
173-185
8
Bayliss W M.
On the origin from the spinal cord of vasodilator fibers of the hind limb, and on the nature of these fibers.
J Physiol Lond.
1901;
26
173-209
9
Bruce N A.
Vasodilator axon-reflexes.
Q J Exp Physiol.
1913;
6
339-354
10
Breslauer F.
Die Pathogenese der trophischen Gewebeschadens nach der Nervenverletzung.
Chir Deut Z.
1919;
150
50-81
11
Jancsó N, Jancsó-Gabor A, Szolcsnyi J.
The role of sensory nerve endings in neurogenic inflammation induced in human skin and in the eye and paw of the rat.
Br J Pharmacol Chemother.
1968;
32
32-41
12
Willis W D.
Exp Brain Res.
Dorsal root potentials and dorsal root reflexes: a double-edged sword.
1999;
124
395-421
13
Lin Q, Wu J, Willis W D.
Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats.
J Neurophysiol.
1999;
82
2602-2611
14
Brimjoin S, Lundberg J M, Brodin E, Hökfelt T, Nilsson G.
Axonal transport of substance P in the vagus and sciatic nerves of the guinea pig.
Brain Res.
1980;
191
443-448
15
Gibson S J, Polak J M, Bloom S R, Sabate I M, Mulderry P M, Ghatei M A, McGregor G P, Morrison J F, Kelly J S, Evans R M.
Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species.
J Neurosci.
1984;
4
3101-3111
16
Moller K, Zhang Y Z, Hankanson R, Luts A, Sjolund B, Uddmann R, Sunder F.
Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: umminocytochemical and immunochemical evidence.
Neuroscience.
1993;
57
725-732
17
Holzer P.
Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds.
Rev Physiol Biochem Pharmacol.
1992;
121
49-146
18
Rosenfeld M G, Mermod J J, Amara S G, Swanson L W, Sawchenko P E, Rivier J, Vale W W, Evans R M.
Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.
Naunyn Schmiedeberg's Arch Pharmacol.
1983;
304
129-135
19
Maggi C A, Patacchini R, Rovero P, Giachetti A.
Tachykinin receptors and tachykinin receptor antagonists.
J Auton Pharmacol.
1993;
13
23-93
20
Otsuka M, Yoshioka K.
Neurotransmitter functions of mammalian tachykinins.
Physiol Rev.
1993;
73
229-308
21
Ogawa T, Kanazawa I, Kimura S.
Regional distribution of substance P, neurokinin alpha and neurokinin beta in rat spinal cord, nerve roots and dorsal root ganglia, and the effects of dorsal root section or spinal transection.
Brain Res.
1985;
359
152-157
22
Hunt S P, Rossi J.
Peptide- and non-peptide-containing unmyelinated primary afferents: the parallel processing of nociceptive information.
Philos Trans R Soc Lond Biol.
1985;
308
283-289
23
Liu-Chen L Y, Liszczak T M, King J C, Moskowitz M A.
Immunoelectron microscopic study of substance P-containing fibers in feline cerebral arteries.
Brain Res.
1986;
369
12-20
24
Alvarez F J, Cervantes C, Blasco I, Villalba R, Martinez M urillo, Polak J M, Rodrigo J.
Presence of calcitonin gene-related peptide (CGRP) and substance P (SP) immunoreactivity in intraepidermal free nerve endings of cat skin.
Brain Res.
1988;
442
391-395
25
McNeill D L, Coggeshall R E, Carlton S M.
A light and electron microscopic study of calcitonin gene-related peptide in the spinal cord of the rat.
Exp Neurol.
1988;
99
699-708
26
Wiesenfeld-Hallin Z, Hokfelt T, Lundberg J M, Forssmann W G, Reinecke M, Tschopp F A, Fischer J A.
Immunoreactive calcitonin gene-related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat.
Neurosci Lett.
1984;
52
199-204
27
Lee Y, Kawai Y, Shiosaka S, Takami K, Kiyama H, Hillyard C J, Girgis S, MacIntyre I, Emson P C, Tohyama M.
Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis.
Brain Res.
1985;
330
194-196
28
Gibbins I L, Furness J B, Costa M, MacIntyre I, Hillyard C J, Girgis S.
Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs.
Neurosci Lett.
1985;
57
125-130
29
Gibbins I L, Wattchow D, Coventry B.
Two immunohistochemically identified populations of calcitonin gene-related peptide (CGRP)-immunoreactive axons in human skin.
Brain Res.
1987;
414
143-148
30
Cameron A A, Leah J D, Snow P J.
The coexistence of neuropeptides in feline sensory neurons.
Neuroscience.
1988;
27
969-979
31
Benrath J, Eschenfelder C, Zimmermann M, Gillardon F.
Calcitonin gene-related peptide, substance P and nitric oxide are involved in cutaneous inflammation following ultraviolet irradiation.
Eur J Pharmacol Environ Toxicol Pharmacol Section.
1995;
293
87-96
32
Maggi C A, Abelli L, Giuliani S, Santicioli P, Geppetti P, Somma V, Frilli S, Meli A.
The contribution of sensory nerves to xylene-induced cystitis in rats.
Neuroscience.
1988;
26
709-723
33
Low A, Westerman R A.
Neurogenic vasodilation in the rat hairy skin measured using a laser Doppler flowmeter.
Life Sci.
1989;
45
49-57
34
Koltzenburg M, Lewin G, McMahon S.
Increase of blood flow in skin and spinal cord following activation of small diameter primary afferents.
Brain Res.
1990;
509
145-149
35
Baumann T K, Simone D A, Shain C N, LaMotte R H.
Neurogenic hyperalgesia: the search for the primary cutaneous afferent fibers that contribute to capsaicin-induced pain and hyperalgesia.
J Neurophysiol.
1991;
66
212-227
36
LaMotte R H, Shain C N, Simone D A, Tsai E F.
Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms.
J Neurophysiol.
1991;
66
190-211
37
LaMotte R H, Lundberg L E, Torebjörk H E.
Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin.
J Physiol (Lond).
1992;
448
749-764
38
Cervero F, Gilbert R, Hammond R G, Tanner J.
Development of secondary hyperalgesia following non-painful thermal stimulation of the skin: a psychophysical study in man.
Pain.
1993;
54
181-189
39 Brain S M. Sensory neuropeptides in the skin. Geppetti P, Holzer P (eds) Neurogenic inflammation. CRC Press, Boca Raton New York London Tokyo 1996: 229-244
40
Towler P K, Bennett G S, Noore P H, Brain S D.
Neurogenic oedema and vasodilatation: effect of a selective neuronal NO inhibitor.
Neuroreport.
1998;
9
1513-1518
41
Sauerstein K, Klede M, Hilliges , Schmelz M.
Electrically evoked neuropeptide release and neurogenic inflammation differ between rat and human skin.
J Physiol (Lond).
2000;
529
803-810
42
Schmelz M, Petersen L J.
Neurogenic inflammation in human and rodent skin.
News Physiol Sci.
2001;
16
33-37
43
Lembeck F.
Zur Frage der zentralen Übertragung afferenter Impulse-III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Rückenmarks.
Arch exp Pathol Pharmakol.
1953;
219
197-213
44
Chahl L A.
Antidromic vasodilatation and neurogenic inflammation.
Pharmac Ther.
1988;
37
275-300
45
Holzer P.
Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides.
Neuroscience.
1988;
24
739-768
46
Bolton T B, Clapp L H.
Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle.
Br J Pharmacol.
1986;
87
713-723
47
Burnstock G.
Local mechanisms of blood flow control by perivascular nerves and endothelium.
J Hypertens Suppl.
1990;
8
S95-106
48
Lembeck F, Holzer P.
Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation.
Naunyn Schmiedeberg's Arch Pharmacol.
1979;
310
175-183
49
Pernow B.
Substance P - a putative mediator of antidromic vasodilation.
Gen Pharmacol.
1983;
14
13-16
50
Wiesner-Menzel L, Schulz B, Vakilzadeh F, Czarnetzki B M.
Electron microscopical evidence for a direct contact between nerve fibres and mast cells.
Acta Derm Venereol Stockh.
1981;
61
465-469
51
Newson B, Dahlstrom A, Enerback L, Ahlman H.
Suggestive evidence for a direct innervation of mucosal mast cells.
Neuroscience.
1983;
10
565-570
52
Tausk F, Undem B.
Exogenous but not endogenous substance P releases histamine from isolated human skin fragments.
Neuropeptides.
1995;
29
351-355
53
Rosenfeld M G, Mermod J J, Amara S G, Swanson L W, Sawchenko P E, Rivier J, Vale W W, Evans R M.
Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing.
Naunyn Schmiedeberg's Arch.Pharmacol..
1983;
304
129-135
54
Björklund H, Dalsgaard C J, Jonsson C E, Hermansson A.
Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study.
Cell Tissue Res.
1986;
243
51-57
55
Ishida Y amamoto, Senba E, Tohyama M.
Distribution and fine structure of calcitonin gene-related peptide-like immunoreactive nerve fibers in the rat skin.
Brain Res.
1989;
491
93-101
56
Jansen I, Uddman R, Hocherman M, Ekman R, Jensen K, Olesen J, Stiernholm P, Edvinsson L.
Localization and effects of neuropeptide Y, vasoactive intestinal polypeptide, substance P, and calcitonin gene-related peptide in human temporal arteries.
Ann Neurol.
1986;
20
496-501
57
Uddman R, Edvinsson L, Ekblad E, Hakanson R, Sundler F.
Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects.
Regul Pept.
9186;
15
1-23
58
Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M.
Substance P- and CGRP-immunoreactive nerves in bone.
Peptides.
1988;
9
165-171
59
Messlinger K, Hanesch U, Kurosawa M, Pawlak M, Schmidt R F.
Calcitonin gene related peptide released from dural nerve fibers mediates increase of meningeal blood flow in the rat.
Can J Physiol Pharmacol.
1995;
73
1020-1024
60
Uddman R, Edvinsson L, Jansen I, Stiernholm P, Jensen K, Olesen J, Sundler F.
Peptide-containing nerve fibres in human extracranial tissue: a morphological basis for neuropeptide involvement in extracranial pain?.
Pain.
1986;
27
391-399
61
Poyner D R.
Calcitonin gene-related peptide: multiple actions, multiple receptors.
Pharmacol Ther.
1992;
56
23-51
62
Brain S D, Williams T J, Tippins J R, Morris H R, MacIntyre I.
Calcitonin gene-related peptide is a potent vasodilator.
Nature.
1985;
313
54-56
63
Brain S D, Tippins J R, Morris H R, MacIntyre I, Williams T J.
Potent vasodilator activity of calcitonin gene-related peptide in human skin.
J Invest Dermatol.
1986;
87
533-536
64
Öhlen A, Lindbom L, Staines W, Hokfelt T, Cuello A C, Fischer J A, Hedqvist P.
Substance P and calcitonin gene-related peptide: immunohistochemical localisation and microvascular effects in rabbit skeletal muscle.
Naunyn Schmiedebergs Arch Pharmacol.
1987;
336
87-93
65
Pedersen-Bjergaard U, Nielsen L B, Jensen K, Edvinsson L, Jansen I, Olesen J.
Calcitonin gene-related peptide, neurokinin A and substance P: effects on nociception and neurogenic inflammation in human skin and temporal muscle.
Peptides.
1991;
12
333-337
66
Fuller R W, Conradson T B, Dixon C M, Crossman D C, Barnes P J.
Sensory neuropeptide effects in human skin.
Br J Pharmacol.
1987;
92
781-788
67
Piotrowski W, Foreman J C.
Some effects of calcitonin gene-related peptide in human skin and on histamine release.
Br J Dermatol.
1986;
114
37-46
68
Wallengren J, Hakanson R.
Effects of substance P, neurokinin A and calcitonin gene-related peptide in human skin and their involvement in sensory nerve-mediated responses.
Eur J Pharmacol.
1987;
143
267-273
69
Ralevic V, Khalil Z, Dusting G J, Helme R D.
Nitric oxide and sensory nerves are involved in the vasodilator response to acetylcholine but not calcitonin gene-related peptide in rat skin microvasculature.
Br J Pharmacol.
1992;
106
650-655
70
Escott K J, Beattie D T, Connor H E, Brain S D.
Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for the calcitonin gene-related peptide.
Brain Res.
1995;
669
93-99
71
Delay-Goyet P, Satoh H, Lundberg J M.
Relative involvement of substance P and CGRP mechanisms in antidromic vasodilation in the rat skin.
Acta Physiol Scand.
1992;
146
537-538
72
Holzer P.
Neurogenic vasodilatation and plasma leakage in the skin.
Gen Pharmac.
1988;
30
5-11
73
Brain S D, Williams T J.
Substance P regulates the vasodilator activity of calcitonin gene-related peptide.
Naunyn Schmiedeberg's Arch Pharmacol.
1988;
335
73-75
74
Petersen L J, Winge K, Brodin E, Skov P S.
No release of histamine and substance P in capsaicin-induced neurogenic inflammation in intact human skin in vivo: a microdialysis study.
Clin Exp Allergy.
1997;
27
957-965
75
Schmelz M, Luz O, Averbeck B, Bickel A.
Plasma extravasation and neuropeptide release in human skin as measured by intradermal microdialysis.
Neurosci Lett.
1997;
18
117-120
76
Green B G.
Temporal characteristics of capsaicin sensitization and desensitization on the tongue.
Physiol Behav.
1991;
49
501-505
77
Szolcsanyi J, Bartho L.
Capsaicin-sensitive non-cholinergic excitatory innervation of the guinea-pig tracheobronchial smooth muscle.
Neurosci Lett.
1982;
34
247-251
78
Bergren D R.
Capsaicin challenge, reflex bronchoconstriction, and local action of substance P.
Am J Physiol.
1988;
254
R845-852
79
Palecek F, Sant'Ambrogio G, Sant'Ambrogio F B, Mathew O P.
Reflex responses to capsaicin: intravenous, aerosol, and intratracheal administration.
J Appl Physiol.
1989;
67
1428-1437
80
Belmonte C, Gallar J, Pozo M A, Rebollo I.
Excitation by irritant chemical substances of sensory afferent units in the cat's cornea.
J Physiol (Lond).
1991;
437
709-725
81
Holzer P.
Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons.
Pharmacol Rev.
1991;
43
143-201
82
Szolcsanyi J, Bartho L.
New type of nerve-mediated cholinergic contractions of the guinea-pig small intestine and its selective blockade by capsaicin.
Naunyn Schmiedeberg's Arch Pharmacol.
1978;
305
83-90
83
Nagy J I, Iversen L L, Goedert M, Chapman D, Hunt S P.
Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat.
J Neurosci.
1983;
3
399-406
84
Buck S H, Burks T F.
The neuropharmacology of capsaicin: review of some recent observations.
Pharmacol Rev.
1986;
38
179-226
85 Lawson S N, Harper A A. Neonatal capsaicin is not a specific neurotoxin for sensory C-fibres or small dark cells of rat dorsal root ganglia. Chahl LA, Szolcsnyi J, Lembeck F (eds) Antidromic Vasodilatation and Neurogenic Inflammation. Akadémiai Kiadó, Budapest 1984: 111-116
86
Jancsó G, Kiraly E, Joo F, Such G, Nagy A.
Selective degeneration by capsaicin of a subpopulation of primary sensory neurons in the adult rat.
Neurosci Lett.
1985;
59
209-214
87
Fitzgerald M, Woolf C J.
The time course and specificity of the changes in the behavioural and dorsal horn cell responses to noxious stimuli following peripheral nerve capsaicin treatment in the rat.
Neuroscience.
1982;
7
2051-2056
88
Green B G, Shaffer G S.
The sensory response to capsaicin during repeated topical exposures: differential effects on sensations of itching and pungency.
Pain.
1993;
53
323-334
89
Maggi C A, Meli A.
The sensory-efferent function of capsaicin-sensitive sensory neurons.
Gen Pharmacol.
1988;
19
1-43
90
Crimi N, Polosa R, Maccarrone C, Palermo B, Palermo F, Mistretta A.
Effect of topical application with capsaicin on skin responses to bradykinin and histamine in man.
Clin Exp Allergy.
1992;
22
933-939
91
DeVries D J, Blumberg P M.
Thermoregulatory effects of resiniferatoxin in the mouse: comparison with capsaicin.
Life Sci.
1989;
44
711-715
92
Szallasi A, Blumberg P M.
Vanilloid receptors: new insights enhance potential as a therapeutic target.
Pain.
1996;
68
195-208
93
Szallasi A, Blumberg P M.
Resiniferatoxin and analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor.
Life Sci.
1990;
47
1399-1408
94 Szallasi A. The vanilloid receptor. Geppetti P, Holzer P (eds) Neurogenic inflammation. CRC Press, Boca Raton New York London Tokyo 1996: 43-52
95
Szolcsanyi J, Szallasi A, Szallasi Z, Joo F, Blumberg P M.
Resiniferatoxin, an ultrapotent selective modulator of capsaicin-sensitive primary afferent neurons.
J Pharmacol Exp Ther.
1990;
255
923-927
96
Bevan S, Hothi S, Hughes G, James I F, Rang H P, Shah K, Walpole C SJ, Yeats J C.
Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin.
Br J Pharmacol.
1992;
107
544-552
97
Szallasi A.
The vanilloid (capsaicin) receptor: receptor types and species differences.
Gen Pharmacol.
1994;
25
223-243
98
Perkins M N, Campbell E A.
Capsazepine reversal of the antinociceptive action of capsaicin in vivo.
Br J Pharmacol.
1992;
107
329-333
99
Urban L, Dray A.
Capsazepine, a novel capsaicin antagonist, selectively antagonises the effects of capsaicin in the mouse spinal cord in vitro.
Neurosci Lett.
1991;
134
9-11
100
Lalloo U G, Fox A J, Belvisi M G, Chung K F, Barnes P J.
Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs.
J Appl Physiol.
1995;
79
1082-1087
101
Santos A RS, Calixto J B.
Ruthenium red and capsazepine aninociceptive effect in formalin and capsaicin midels of pain in mice.
Neurosci Lett.
1997;
235
73-76
102
Dickenson A, Hughes C, Rueff A, Dray A.
A spinal mechanism of action is involved in the antinociception produced by the capsaicin analogue NE 19550 (olvanil).
Pain.
1990;
43
353-362
103
Davis K D, Meyer R A, Turnquist J L, Filloon T G, Pappagallo M, Campbell J N.
Cutaneous pretreatment with the capsaicin analog NE-21610 prevents the pain to a burn and subsequent hyperalgesia.
Pain.
1995;
62
373-378
104
Hua X Y, Chen P, Hwang J H, Yaksh T L.
Antinociception induced by civamide, an orally active capsaicin analogue.
Pain.
1997;
71
313-322
105
Szallasi A, Blumberg P M, Nilsson S, Hökfelt T, Lundberg J M.
Visualization by [3 H]resiniferatoxin autoradiography of capsaicin-sensitive neurons in the rat, pig, and man.
Eur J Pharmacol.
1994;
264
217-224
106
Szallasi A, Goso C.
Characterization by [3 H]resiniferatoxin binding of a human vanilloid (capsaicin) receptor in post-mortem spinal cord.
Neurosci Lett.
1994;
165
101-104
107
Caterina M J, Schumacher M A, Tominaga M, Rosen T A, Levine J D, Julius D.
The capsaicin receptor: a heat activated ion channel in the pain pathway.
Nature.
1997;
389
816-824
108
Wood J N, Winter J, James I F, Rang H P, Yeats J, Bevan S.
Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture.
J Neurosci.
1988;
8
3208-3220
109
Bevan S, Geppetti P.
Protons: small stimulants of capsaicin sensitive sensory nerves.
Trends Neurosci .
1994;
17
509-512
110
Petersen M, LaMotte R H.
Effect of protons on the inward current evoked by capsaicin in isolated dorsal root ganglion cells.
Pain.
1993;
54
37-42
111
Kress M, Fetzer S, Reeh P, Vyklicky L.
Low pH facilitates capsaicin responses in isolated sensory neurones of the rat.
Neurosci Lett.
1996;
211
5-8
112
Jung J, Hwang S W, Kwak J, Lee S Y, Kang C J, Kim W B, Kim D, Oh U.
Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel.
J Neurosci.
1999;
19
529-538
113
Olah Z, Karai L, Iadarola M J.
Anandamide activates vanilloid receptor 1 (VR1) at acidic ph in dorsal root ganglia neurons and cells ectopically expressing VR1.
J Biol Chem.
201;
276
31163-31170
114
Sprague J, Harrison C, Rowbotham D J, Smart D, Lambert D G.
Temperature-dependent activation of recombinant rat vanilloid VR1 receptors expressed in HEK293 cells by capsaicin and anandamide.
Eur J Pharmacol.
2001;
423
121-125
115
Szallasi A, DiMarzo V.
New perspectives on enigmatic vanilloid receptors.
Trends Neurosci.
2000;
23
491-497
116
Smart D, Gunthorpe M J, Jerman J C, Nasir S, Gray J, Muir A I, Chambers J K, Randall A D, Davis J B.
The endogenous lipid anandamide is a full agonist at the human vailloid receptor (hVR1).
Br J Pharmacol.
2000;
129
227-230
117
Vellani V, Mapplebeck S, Moriondo A, Davis J B, McNaughton P A.
Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide.
J Physiol (Lond).
2001;
534
813-825
118
Watson C P, Evans R J.
The postmastectomy pain syndrome and topical capsaicin: a randomized trial.
Pain.
1992;
51
375-379
119
Watson C P, Evans R J, Watt V R.
The post-mastectomy pain syndrome and the effect of topical capsaicin.
Pain.
1989;
38
177-186
120
Rains C, Bryson H M.
Topical capsaicin. A review of its pharmacological properties and therapeutic potential in post-herpetic neuralgia, diabetic neuropathy and osteoarthritis.
Drugs Aging.
1995;
7
317-328
121
Puig L, Alegre M, de Moragas J M.
Treatment of meralgia paraesthetica with topical capsaicin.
Dermatology.
1995;
191
73-74
122
Low P A, Opfer-Gehrking T L, Dyck P J, Litchy W J, O'Brien P C.
Double-blind, placebo-controlled study of the application of capsaicin cream in chronic distal painful neuropathy.
Pain.
1995;
62
163-168
123
Quartara L, Maggi C A.
The tachykinin NK1 receptor. Part I: ligands and mechanisms of cellular activation.
Neuropeptides.
1997;
31
537-563
124
Aizawa H, Koto H, Nakano H, Inoue H, Matsumoto K, Takata S, Shigyo M, Hara N.
The effect of a specific tachykinin receptor antagonist FK-224 on ozone-induced airway hyperresponsiveness and inflammation.
Respirology.
1997;
2
261-265
125 Lowe J AIII, Snider R M, MacLean D B. Nonpeptide NK1 antagonists: from discovery to the clinic. In: Geppetti P, Holzer P (eds) Neurogenic inflammation. CRC Press, Boca Raton New York London Tokyo 1996: 299-309
126
Maggi C A.
The pharmacology of the efferent function of sensory nerves.
J Auton Pharmacol.
1991;
11
173-208
127
Maggi C A.
Tachykinins as peripheral modulators of primary afferent nerves and visceral sensitivity.
Pharmacol Res.
1997;
36
153-169
128
Quartara L, Maggi C A.
The tachykinin NK1 receptor. Part II: distribution and pathophysiological roles.
Neuropeptides.
1998;
32
1-49
129
Herbert M K, Holzer P.
Warum versagen Substanz P (NK1)-Rezeptorantagonisten in der Schmerztherapie?.
Anaesthesist.
2002;
51
308-319
130
Joos G F, Kips J C, Peleman R A, Pauwels R A.
Tachykinin antagonists and the airways.
Arch Int Pharmacodyn.
1995;
329
205-219
131
Barnes P J, Belvisi M G, Rogers D F.
Modulation of neurogenic inflammation: novel approaches to inflammatory disease.
Trends Pharmacol Sci.
1990;
11
185-189
132
Donnerer J, Amann R.
The inhibition of neurogenic inflammation.
Gen Pharmacol.
1993;
24
519-529
133
Lundberg J M, Saria A.
Polypeptide-containing neurons in airway smooth muscle.
Annu Rev Physiol.
1987;
49
557-572
134
Lembeck F.
The 1988 Ulf Euler Lecture. Substance P: from extract to excitement.
Acta Physiol Scand.
1988;
133
435-454
135
Lei Y H, Barnes P J, Rogers D F.
Inhibition of neurogenic plasma exudation in guinea-pig airways by CP-96,345, a new non-peptide NK1 receptor antagonist.
Br J Pharmacol.
1992;
105
261-262
136
Lembeck F, Donnerer J, Tsuchiya M, Nagahisa A.
The non-peptide tachykinin antagonist, CP-96,345, is a potent inhibitor of neurogenic inflammation.
Br J Pharmacol.
1992;
105
527-530
137
Szolcsanyi J, Heyles Z, Oroszi G, Nemeth J, Pinter E.
Release of somatostatin and ist role in the mediation of the anti-inflammatory effect induced by antidromic stimulation of sensory fibres of rat sciatic nerve.
Br J Pharmacol.
1998;
123
936-942
138
Pinter E, Szolcsanyi J.
Systemic anti-inflammatory effect induced by antidromic stimulation of the dorsal roots in the rat.
Neurosci Lett.
1996;
212
33-36
139 Herbert M K. Neurogene Entzündung an Haut und Gelenk. Klinische und tierexperimentelle Studien. Habilitationsschrift, Julius-Maximilians-Universität Würzburg 1994
140
Ohkubo T, Shibata M, Inoue M, Kaya H, Takahashi H.
Regulation of substance P release mediated by prejunctional histamine H3 receptors.
Eur J Pharmacol.
1995;
273
83-88
141
Dux M, Janso G, Sann H, Pierau F K.
Inhibition of the neurogenic inflammatory response by lidocaine in rat skin.
Inflamm Res.
1996;
45
10-13
142
Lundberg J M, Saria A.
Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants.
Nature.
1983;
302
251-253
143
Floreani A A, Rennard S I.
Experimental treatments for asthma.
Curr Opin Pulm Med.
1997;
3
30-41
144
Feletou M, Lonchampt M, Robineau P, Jamonneau I, Thurieau C, Fauchere J L, Villa P, Ghezzi P, Prost J F, Canet E.
Effects of the bradykinin B2 receptor antagonist S16118 (p-guanidobenzoyl-[Hyp3,Thi5,D-Tic7,Oic8]bradykinin) in different in vivo animal models of inflammation.
J Pharmacol Exp Ther.
1995;
273
1078-1084
145
Buzzi M G, Moskowitz M A.
The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater.
Br J Pharmacol.
1990;
99
202-206
146
Buzzi M G, Moskowitz M A, Peroutka S J, Byun B.
Further characterization of the putative 5-HT receptor which mediates blockade of neurogenic plasma extravasation in rat dura mater.
Br J Pharmacol.
1991;
103
1421-1428
147
Matsubara T, Moskowitz M A, Byun B.
CP-93,129, a potent and selective 5-HT1B receptor agonist blocks neurogenic plasma extravasation within rat but not guinea-pig dura mater.
Br J Pharmacol.
1991;
104
3-4
148
Kajekar R, Gupta P, Shepperson N M, Brain S D.
Effect of a 5-HT1 receptor agonist, CP-122,288, on oedema formation induced by stimulation of the rat saphenous nerve.
Br J Pharmacol.
1995;
115
1-2
149
Pierce P A, Xie G X, Peroutka S J, Levine J D.
Dual effects of the serotonin agonist, sumatriptan, on peripheral neurogenic inflammation.
Reg Anesth.
1996;
21
219-225
150
Buzzi M G, Sakas D E, Moskowitz M A.
Indomethacin and acetylsalicylic acid block neurogenic plasma protein extravasation in rat dura mater.
Eur J Pharmacol.
1989;
165
251-258
151
Herbert M K, Tafler R, Schmidt R F, Weis K H.
Cyclooxygenase inhibitors acetylsalicylic acid and indomethacin do not affect capsaicin-induced neurogenic inflammation in human skin.
Agents Actions.
1993;
38
C25-C27
152
Stein C.
Peripheral mechanisms of opioid analgesia.
Anesth Analg.
1993;
76
182-191
153
Donnerer J, Amann R.
Sensory pharmacology.
Pharmacol Toxicol.
1991;
69
228-232
154
Bartho L, Stein C, Herz A.
Involvement of capsaicin-sensitive neurones in hyperalgesia and enhanced opioid antinociception in inflammation.
Naunyn Schmiedebergs Arch Pharmacol.
1990;
342
666-670
155
Helyes Z, Nemeth J, Pinter E, Szolcsanyi J.
Inhibition by nociceptin of neurogenic inflammation and the release of SP and CGRP from sensory nerve terminals.
Br J Pharmacol.
1997;
121
613-615
156
Brokaw J J, White G W.
Characterization of ruthenium red as an inhibitor of neurogenic inflammation in the rat trachea.
Gen Pharmacacol.
1995;
26
327-331
157
Amann R, Donnerer J, Lembeck F.
Capsaicin-induced stimulation of polymodal nociceptors is antagonized by ruthenium red independently of extracellular calcium.
Neuroscience.
1989;
32
255-259
158
Amann R, Donnerer J, Lembeck F.
Activation of primary afferent neurons by thermal stimulation. Influence of ruthenium red.
Naunyn Schmiedeberg's Arch Pharmacol.
1990;
341
108-113
159
Yamawaki I, Tamaoki J, Takeda Y, Nagai A.
Inhaled cromoglycate reduces airway neurogenic inflammation via tachykinin antagonism.
Res Commun Mol Pathol Pharmacol.
1997;
98
265-272
160
Bar-Shavit Z, Goldman R, Stabinsky Y, Gottlieb P, Fridkin M, Teichberg V I, Blumberg S.
Enhancement of phagocytosis - a newly found activity of substance P residing in its N-terminal tetrapeptide sequence.
Biochem Biophys Res Commun.
1980;
94
1445-1451
161
Hartung H P, Toyka K V.
Activation of macrophages by substance P: induction of oxidative burst and thromboxane release.
Eur J Pharmacol.
1983;
89
301-305
162
Payan D G, Goetzl E J.
Modulation of lymphocyte function by sensory neuropeptides.
J Immunol.
1985;
135
783s-786s
163
Hartung H P, Wolters K, Toyka K V.
Substance P: binding properties and studies on cellular responses in guinea pig macrophages.
J Immunol.
1986;
136
3856-3863
164
Stanisz A M, Befus D, Bienenstock J.
Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer's patches, mesenteric lymph nodes, and spleen.
J Immunol.
1986;
136
152-156
165
Ferreira S H, Lorenzetti B B, Bristow A F, Poole S.
Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue.
Nature.
1988;
334
698-700
166
Cunha F Q, Poole S, Lorenzetti B B, Ferreira S H.
The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia.
Br J Pharmacol.
1992;
107
660-664
167
Wood D D, Ihrie E J, Dinarello C A, Cohen P L.
Isolation of an interleukin-1-like factor from human joint effusions.
Arthritis Rheum.
1983;
26
975-983
168
Nouri A M, Panayi G S, Goodman S M.
Cytokines and the chronic inflammation of rheumatic disease. I. The presence of interleukin-1 in synovial fluids.
Clin Exp Immunol.
1984;
55
295-302
169
Waalen K, Duff G W, Forre O, Dickens E, Kvarnes L, Nuki G.
Interleukin 1 activity produced by human rheumatoid and normal dendritic cells.
Scand J Immunol.
1986;
23
365-371
170
Eastgate J A, Symons J A, Wood N C, Grinlinton F M, di Giovine F S, Duff G W.
Correlation of plasma interleukin 1 levels with disease activity in rheumatoid arthritis.
Lancet.
1988;
2
706-709
171
Hopkins S J, Humphreys M, Jayson M I.
Cytokines in synovial fluid. I. The presence of biologically active and immunoreactive IL-1.
Clin Exp Immunol.
1988;
72
422-427
172
Feldmann M, Brennan F M, Chantry D, Haworth C, Turner M, Abney E, Buchan G, Barrett K, Barkley D, Chu A.
Cytokine production in the rheumatoid joint: implications for treatment.
Ann Rheum Dis.
1990;
49
480-486
173
Hopkins S J, Meager A.
Cytokines in synovial fluid: II. The presence of tumour necrosis factor and interferon.
Clin Exp Immunol.
1988;
73
88-92
174
Saxne T, Palladino M A, Jr. , Heinegard D, Talal N, Wollheim F A.
Detection of tumor necrosis factor alpha but not tumor necrosis factor beta in rheumatoid arthritis synovial fluid and serum.
Arthritis Rheum.
1988;
31
1041-1045
175
Chu C Q, Field M, Feldmann M, Maini R N.
Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis.
Arthritis Rheum.
1991;
34
1125-1132
176
Thornton S C, Por S B, Penny R, Richter M, Shelley L, Breit S N.
Identification of the major fibroblast growth factors released spontaneously in inflammatory arthritis as platelet derived growth factor and tumour necrosis factor-alpha.
Clin Exp Immunol.
1991;
86
79-86
177
Borzi R M, Arfilli L, Focherini M C, Pulsatelli L, Meliconi R.
Circulating tumor necrosis factor alpha in rheumatoid arthritis.
Boll Soc Ital Biol Sper.
1993;
69
39-43
178
Herbert M K, Holzer P.
Interleukin-1β enhances capsaicin-induced neurogenic vasodilatation in the rat skin.
Br J Pharmacol.
1994;
111
681-686
179
Herbert M K, Holzer P.
Nitric oxide mediates the amplification by interleukin-1β of neurogenic vasodilatation in the rat skin.
Eur J Pharmacol.
1994;
260
89-93
180
Herbert M K, Hering S.
Tumor necrosis factor a prevents interleukin-1β from augmenting capsaicin-induced vasodilatation in the rat skin.
Eur J Pharmacol.
1995 ;
286
273-279
181
Follenfant R L, Nakamura C raig, Henderson B, Higgs G A.
Inhibition by neuropeptides of interleukin-1 beta-induced, prostaglandin-independent hyperalgesia.
Br J Pharmacol.
1989;
98
41-43
182
Schweizer A, Feige U, Fontana A, Muller K, Dinarello C A.
Interleukin-1 enhances pain reflexes. Mediation through increased prostaglandin E2 levels.
Agents Actions.
1988;
25
246-251
183
Chapman P B, Lester T J, Casper E S, Gabrilove J L, Wong G Y, Kempin S J, Gold P J, Welt S, Warren R S, Starnes H F.
Clinical pharmacology of recombinant tumor necrosis factor in patients with advanced cancer.
J Clin Oncol.
1987;
5
1942-1951
184
Tewari A, Buhles W CJ, Starnes H FJ.
Preliminary report: effects of interleukin-1 on platelet counts.
Lancet.
1990;
336
712-714
185
Smith J W, Urba W J, Curti B D, Elwood L J, Steis R G, Janik J E, Sharfman W H, Miller L L, Fenton R G, Conlon K C.
The toxic and hematologic effects of interleukin-1 alpha administered in a phase I trial to patients with advanced malignancies.
J Clin Oncol.
1992;
10
1141-1152
Priv.-Doz. Dr. med. Michael K. Herbert
Klinik für Anaesthesiologie der Universität Würzburg
Josef-Schneider-Straße 2
97080 Würzburg
eMail: mherbert@anaesthesie.uni-wuerzburg.de