References
1a
Curran DP.
Fevig TP.
Jasperse CP.
Chem. Rev.
1991,
91:
1237
1b
Giese B.
Kopping B.
Göbel T.
Dickhaut J.
Thoma G.
Kulicke KJ.
Trach F.
Org. React.
1996,
48:
301
2a
Dobbs AP.
Jones K.
Veal KT.
Tetrahedron Lett.
1995,
36:
4857 ; and references therein
2b
Dobbs AP.
Jones K.
Veal KT.
Tetrahedron
1998,
54:
2149 ; and references therein
2c
Fiumana A.
Jones K.
Tetrahedron Lett.
2000,
41:
4209
3a
Shankaran K.
Sloan CP.
Snieckus V.
Tetrahedron Lett.
1985,
26:
6001
3b
Snieckus V.
Bull. Soc. Chim. Fr.
1988,
67
4
Nadin A.
Harrison T.
Tetrahedron Lett.
1999,
40:
4073
5a
Harrowven DC.
Browne R.
Tetrahedron Lett.
1994,
35:
5301
5b
Harrowven DC.
Nunn MIT.
Tetrahedron Lett.
1998,
39:
5875
5c
Harrowven DC.
Nunn MIT.
Blumire NJ.
Fenwick DR.
Tetrahedron Lett.
2000,
41:
6681
5d
Harrowven DC.
Sutton BJ.
Coulton S.
Tetrahedron Lett.
2001,
42:
9061
5e
Harrowven DC.
Nunn MIT.
Blumire NJ.
Fenwick DR.
Tetrahedron
2001,
57:
4447
6a
Jones K.
Fiumana A.
Tetrahedron Lett.
1996,
37:
8049
6b
Jones K.
Fiumana A.
Escudero-Hernandez ML.
Tetrahedron
2000,
56:
397
7
Dobbs AP.
Jones K.
Veal KT.
Tetrahedron Lett.
1997,
38:
5383
8a
Minisci F.
Vismara E.
Fontana F.
Heterocycles
1989,
28:
489
8b
Fontana F.
Minisci F.
Barbosa MCN.
Vismara E.
J. Org. Chem.
1991,
56:
2866
8c
Minisci F.
Vismara E.
Fontana F.
J. Heterocycl. Chem.
1990,
27:
79
9
Minisci F.
Fontana F.
Pianese G.
Yan YM.
J. Org. Chem.
1993,
58:
4207
10a
Togo H.
Hayashi K.
Yokoyama M.
Chem. Lett.
1991,
2063
10b
Togo H.
Hayashi K.
Yokoyama M.
Chem. Lett.
1993,
641
11a
Murphy JA.
Sherburn MS.
Tetrahedron Lett.
1990,
31:
1625
11b
Murphy JA.
Sherburn MS.
Tetrahedron Lett.
1990,
31:
3495
12a
Da Mata MLEN.
Motherwell WB.
Ujjainwalla F.
Tetrahedron Lett.
1997,
38:
137
12b
Da Mata MLEN.
Motherwell WB.
Ujjainwalla F.
Tetrahedron Lett.
1997,
38:
141
12c
Clive DL.
Kang S.
Tetrahedron Lett.
2000,
41:
1315
12d
Bonfand E.
Forslund L.
Motherwell WB.
Vazquez S.
Synlett
2000,
475
12e
Studer A.
Bossart M.
Steen H.
Tetrahedron Lett.
1998,
39:
8829
13a
Carceller R.
García-Navío JL.
Izquierdo ML.
Alvarez-Builla J.
Fajardo M.
Gomez-Sal P.
Gago F.
Tetrahedron
1994,
50:
4995
13b
Burgos C.
Delgado F.
García-Navío JL.
Izquierdo ML.
Alvarez-Builla J.
Tetrahedron
1995,
51:
8649
13c
García de Viedma A.
Martínez-Barrasa V.
Burgos C.
Izquierdo ML.
Alvarez-Builla J.
J. Org. Chem.
1999,
64:
1007
13d
Martínez-Barrasa V.
Delgado F.
Burgos C.
García-Navío JL.
Izquierdo ML.
Alvarez-Builla J.
Tetrahedron
2000,
56:
2481
14a
Kakehi A.
Ito S.
Ono T.
Miyazima T.
Chem. Lett.
1979,
205
14b
Kakehi A.
Ito S.
Ono T.
Miyazima T.
J. Chem. Res., Synop.
1980,
18
14c
Kakehi A.
Kitajima J.
Ito S.
Tagusagawa N.
Acta Cryst.
1995,
942
14d
Phadke RC.
Rangnekar DW.
Synthesis
1987,
484
14e
Bast K.
Behrens M.
Durst T.
Grashey R.
Huisgen R.
Schiffer R.
Temme R.
Eur. J. Org. Chem.
1998,
379
15
Typical Procedure, Method A: 3-Chloro-dipyrido[1,2-
b;
3′2′-
d
]pyrazole 5a: A solution of tris(trimethylsilyl)silane (TTMSS) (0.149 g 0.6 mmol) and AIBN (0.099 g, 0.6 mmol) in 6 mL of dry benzene was diluted with 14 mL of dry acetonitrile. The resulting solution was added dropwise by a syringe pump during 16 h, to a dispersion of potassium carbonate (0.083 g, 0.6 mmol) and the aminide 1c (0.062 g, 0.3 mmol) in 50 mL of dry acetonitrile, stirred at 80ºC (bath temperature), under an atmosphere of dry argon. After being stirred at the same temperature until 24 h, full consumption of 1c was observed (TLC analysis). The reaction mixture was allowed to warm to r.t. and distilled water (5 mL) was added. The organic extracts were dried (Na2SO4) and concentrated in vacuo, providing a crude product that was purified by flash chromatography [silicagel, ethyl acetate:hexane (1:1) (Rf ≈ 0.30)]. Yellow solid (0.034 g, 56% yield, toluene, mp = 212-214 ºC). 1H NMR (300 MHz, CDCl3): δ = 8.87 (ddd, 1 H, J = 6.9, 1.2 and 1.1 Hz), 8.80 (d, 1 H, J = 2.4 Hz), 8.39 (d, 1 H, J = 2.4 Hz), 8.11 (ddd, 1 H, J = 8.5, 1.4 and 1.1 Hz), 7.51 (ddd, 1 H, J = 8.5, 7.3 and 1.2 Hz), 7.33 (ddd, 1 H, J = 7.3, 6.9 and 1.4 Hz). 13C NMR (75 MHz, CDCl3): δ = 157.7, 152.2, 146.5, 134.4, 129.0, 127.7, 124.0, 122.8, 118.5, 117.8. IR (KBr): 2922, 1706, 1641, 1437 cm-1. MS (CI): m/z = 204, 206 ([M+ + 1], 100, 32). EIMS HR: calcd for C10H6
35ClN3: [M+] 203.0246. Found: 203.0240.
15a Loss of a proton from a dihydropyridine radical cation is a key step in the oxidative homolytic alkylation of pyridinium salts, in aqueous or Me2SO solutions: Minisci F.
Fontana F.
Morini G.
Serravalle M.
Giordano C.
J. Org. Chem.
1987,
52:
730
15b Rusell and co-workers have reported previously the use of bases to promote the substitutive reactions of aromatics: Rusell GA.
Chen P.
Kim BH.
Rajaratnam R.
J. Am. Chem. Soc.
1997,
119:
8795
15c
Wang C.
Rusell GA.
Trahanovsky WS.
J. Org. Chem.
1998,
63:
9956
17 Potassium carbonate could abstract a proton from the substituted dihydropyridine radical 6 (Scheme
[2]
), to form the radical 7, that would be converted in the arylated compound 5 (see ref.
[15b]
[c]
). In the absence of potassium carbonate, dihydropyridine radical 6 did not evolve to 5, and only decomposition products and N-N reduction compounds were observed.
18
Martínez-Barrasa V.
García de Viedma A.
Burgos C.
Alvarez-Builla J.
Org. Lett.
2000,
2:
3933
19
Typical Procedure, Method E: Pyridinium
N
-(3′-bromo-5′-chloropyrazin-2′-yl)aminide 1e: To a solution of pyridinium (N-(2′-pyrazinyl)aminide 1b (0.172 g, 1 mmol) in dry dichloromethane (5 mL) stirred at 0 ºC was added dropwise a solution of N-chlorosuccinimide (NCS) (0.160 g, 1.2 mmol) in dry dichloromethane (10 mL). The reaction mixture was stirred for 1 h at the same temperature, allowed to warm up to r.t. and stirring for a further 24 h. The solvent was evaporated and the residue was purified by flash chromatography [silicagel, ethanol, (Rf ≈ 0.25)] to yield 0.149 g (72%) of pyridinium N-(5′-chloropyrazin-2′-yl)aminide 8b: Yellow solid (ethyl acetate, mp = 158-161 ºC). 1H NMR (300 MHz, CD3OD): δ = 8.76 (dd, 2 H, J = 5.7 and 1.3 Hz), 8.13 (tt, 1 H, J = 8.2 and 1.3 Hz), 7.86 (dd, 2 H, J = 8.2 and 5.7 Hz), 7.62 (d, 1 H, J = 1.4 Hz), 7.60 (d, 1 H, J = 1.4 Hz). 13C NMR (75 MHz, CD3 OD): δ = 160.8, 145.0, 140.3, 139.5, 135.4, 132.1, 128.7. Anal. Calcd for C9H7ClN4: C, 52.31; H, 3.41; N, 27.11. Found: C, 52.32; H, 3.69; N, 27.31. To a solution of pyridinium N-(5′-chloro-pyrazin-2′-yl)aminide 8b (0.206 g, 1 mmol) in dry dichloro-methane (5 mL) stirred at r.t., was added dropwise a solution of N-bromosuccinimide (NBS) (0.214 g, 1.2 mmol) in dry dichlorometane (10 mL). The reaction mixture was stirred until 24 h at the same temperature, the solvent was eva-porated and the residue was purified by flash chromato-graphy [silicagel, ethanol (Rf ≈ 0.75)] to yield 0.231 g (81%) of pyridinium N-(3′-bromo-5′-chloropyrazin-2′-yl)aminide 1e: Yellow-orange solid (ethyl acetate, mp = 203-205 ºC). 1H NMR (300 MHz, CD3OD): δ = 8.70 (dd, 2 H, J = 6.9 and 1.4 Hz), 8.25 (tt, 1 H, J = 7.8 and 1.4 Hz), 7.93 (dd, 2 H, J = 7.8 and 6.9 Hz), 7.60 (s, 1 H). 13C NMR (75 MHz, CD3OD): δ = 158.4, 146.2, 141.4, 139.6, 130.8, 129.0, 126.0; Anal. Calcd for C9H6BrClN4: C, 37.86; H, 2.12; N, 19.62. Found: C, 38.01; H, 2.43; N, 19.31.