References
<A NAME="RS00502ST-1A">1a</A>
Bovy PR,
Rico JG, and
Rogers TE. inventors; U.S. Patent 6 037 365.
; Chem. Abstr. 2000, 132, 207753
<A NAME="RS00502ST-1B">1b</A>
Bovy PR,
Rico JG, and
Rogers TE. inventors; U.S. Patent 9 506 038.
; Chem. Abstr. 1995, 123, 33068
<A NAME="RS00502ST-1C">1c</A>
Bovy PR,
Rico JG, and
Rogers TE. inventors; U.S. Patent 9 312 103.
; Chem. Abstr. 1993, 120, 106764
<A NAME="RS00502ST-2A">2a</A>
Askew BC,
Hartman GD,
Duggan ME,
Young SD,
Hutchinson JH,
Wai JS,
Egbertson MS,
Vassallo LM,
Libby LA,
Ihle NC,
Krause AE, and
Halczenko W. inventors; U.S. Patent 9 714 417.
; Chem. Abstr. 1997, 126, 5353
<A NAME="RS00502ST-2B">2b</A>
Askew BC,
Hartman GD,
Duggan ME,
Young SD,
Hutchinson JH,
Wai JS,
Egbertson MS,
Vassallo LM,
Libby LA,
Ihle NC,
Krause AE, and
Halczenko W. inventors; U.S. Patent 5 852 045.
; Chem. Abstr. 1998, 130, 66809
<A NAME="RS00502ST-2C">2c</A>
Sato M,
Mannaka A,
Takahashi K,
Kawashima Y, and
Hatayama K. inventors; J. P. Patent 7 206 860.
; Chem. Abstr. 1995, 124, 8804
<A NAME="RS00502ST-2D">2d</A>
Hartman GD,
Prugh JD,
Halczenko W,
Egbertson M, and
Ihle N. inventors; U.S. Patent 9 504 531.
; Chem. Abstr. 1995, 123, 228162
<A NAME="RS00502ST-3">3</A>
Ruminski PG,
Clare M,
Collins PW,
Desai BN,
Lindmark RJ,
Rico JG,
Rogers TE, and
Russell MA. inventors; U.S. Patent 9 708 145.
; Chem. Abstr. 1997, 126, 264011
<A NAME="RS00502ST-4">4</A>
Mullican MD.
Lauffer DJ.
Gillispie RJ.
Matharu SS.
Kay D.
Porrit GM.
Evans PL.
Golec JMC.
Murcko MA.
Bioorg. Med. Chem. Lett.
1994,
4(19):
2359
<A NAME="RS00502ST-5A">5a</A>
Chu DT, and
Li Q. inventors; U.S. Patent 5 252 747.
; Chem. Abstr. 1993, 120, 298642
<A NAME="RS00502ST-5B">5b</A>
Ashina Y,
Fukuda Y, and
Fukuda H. inventors; E. P. Patent 443 498.
; Chem. Abstr. 1991, 115, 256018
<A NAME="RS00502ST-6">6</A>
Nagai K.
Tanaka R.
Murakami H.
Sano A.
Arzneim-Forsch.
1967,
17:
1575 ; Chem. Abstr. 1967, 68, 67444
<A NAME="RS00502ST-7">7</A>
McGarvey GJ.
Williams JM.
Hiner RN.
Matsubara Y.
Oh T.
J. Am. Chem. Soc.
1986,
108:
4943
<A NAME="RS00502ST-8">8</A>
Rinehart KL.
Harada K.
Namikoshi M.
Chen C.
Harvis CA.
Munro MHG.
Blunt JW.
Mulligan PE.
Beasley VR.
Dahlem AM.
Carmichel WW.
J. Am. Chem. Soc.
1988,
110:
8557
<A NAME="RS00502ST-9">9</A>
Atmani A.
El Hallaoui A.
El Hajji S.
Roumestant ML.
Viallefont P.
Synth. Commun.
1971,
21:
2383
<A NAME="RS00502ST-10">10</A>
Hvidt T.
Szarek WA.
Maclean DB.
Can. J. Chem.
1988,
66:
779
<A NAME="RS00502ST-11">11</A>
Calvisi G.
Catini R.
Chiariotti W.
Giannessi F.
Muck S.
Tinti MO.
De Angelis F.
Synlett
1997,
71
<A NAME="RS00502ST-12">12</A>
Benzyl (3
S
)-[(
tert
-butoxycarbonyl)amino]-4-hydroxy-butanoate(3). Prepared from N-t-boc-l-aspartic acid
β-benzyl ester following a literature procedure
[13d]
as a white solid. Yield 95%, ee > 98%. Enantiomeric excess was determined by HPLC using a normal phase Chiralpak
AD column, hexanes-isopropanol 90:10, 1 mL/min, at 250 nm, mp 62-63.8 °C [α]D
25 -6.0 (c = 1, MeOH); lit.
[13e]
[α]D -6.0 (c = 1, MeOH). 1H NMR (250 MHz; CDCl3), δ: 7.33 (s, 5 H), 5.28 (s, 1 H), 5.11 (s, 2 H), 4.00 (s, 1 H), 3.64 (d, J = 4.7 Hz, 2 H), 2.88 (s, 1 H), 2.64 (d, J = 6.2 Hz, 2 H), 1.42 (s, 9 H). 13C NMR (67.5 MHz; CDCl3) δ: 172.06, 156.23, 135.99, 129.02, 128.76, 128.66, 107.82, 80.29, 67.05, 49.87,
36.47, 28.76. MS (FAB) (M + H+) calcd 310.16, found 310.10. Anal. Calcd. for C16H23NO5: C, 62.12; H, 7.49; N, 4.53. Found C, 61.72; H, 7.39; N, 4.41.
<A NAME="RS00502ST-13A">13a</A>
Seki H.
Koga K.
Matsu H.
Ohki S.
Matsuo I.
Yamada S.
Chem. Pharm. Bull.
1965,
13:
995
<A NAME="RS00502ST-13B">13b</A>
Soai K.
Bull. Chem. Soc. Jpn.
1984,
57:
2327
<A NAME="RS00502ST-13C">13c</A>
Soai K.
Yokoyama S.
Mochida K.
Synthesis
1987,
647
<A NAME="RS00502ST-13D">13d</A>
Kokotos G.
Synthesis
1990,
299
<A NAME="RS00502ST-13E">13e</A>
Rodriguez M.
Linares M.
Doulut S.
Heitz A.
Martinez J.
Tetrahedron Lett.
1991,
32:
923
<A NAME="RS00502ST-14">14</A>
3-(
S
)-amino-γ-butyrolactone hydrochloride(1) The amino alcohol 4 (1.26g, 4 mmol) was treated with 40 mL of 2 M HCl in diethyl ether. The temperature
was kept at 0 °C for 6 h, then allowed to rise to room temperature, and stirred for
18 hours. The excess of HCl and ether were evaporated first under a stream of N2 and then under vacuum. The residue, a white solid was filtered out, washed with ethyl
ether (3 × 20 mL), and dried at room temperature. Yield 98%. mp 182-184 °C. [α]D
25 -59.3 (c = 1, H2O); lit.
[11]
[α]D
20 + 56.7 (c = 1, H2O) (R) form. 1H NMR [250 MHz; (DMSO-d6)] δ: 8.76 (s, 3 H), 4.5 (dd, J = 10.4 Hz, J = 6.6 Hz, 1 H), 4.36 (dd, J = 10.4 Hz, J = 2.7 Hz, 1 H), 4.10 (m, 1 H), 3.0 (dd, J = 18.3, J = 8.5 Hz, 1 H), 2.57 (dd, J = 18.3 Hz, J = 2.9 Hz, 1 H). 13C NMR: [67.5 MHz; (DMSO-d6)] δ: 175.39, 71.05, 41.19, 33.42. MS (FAB) (M + H+) calcd. 102.1, found 102.1. Anal. Calcd. for C4H8ClNO2: C, 34.92; H, 5.86; N, 10.18; Cl, 25.77. Found C, 34.99; H, 5.62; N, 10.08; Cl, 25.12.