Zusammenfassung
Ziel: Vergleich der kontrastverstärkten MRT mit dem Referenzstandard [18 F]-FDG-PET zur Detektion und Charakterisierung myokardialer Narben. Methoden: Bei 29 Patienten mit KHK und eingeschränkter LV-Funktion wurden eine [18 ]-FDG-PET und eine Perfusionsszintigraphie (SPECT) mit [201 Tl]-TlCl durchgeführt. Danach erfolgte die MRT an einem 1,5 T-Scanner (Magnetom Sonata, Siemens). Nach der Steady-state free precession-Funktionsstudie erfolgte die i. v.-Gabe von 0,2 mmol/kg KG Gd-DTPA (Magnevist®, Schering). Zum Nachweis eines „late enhancement” (Narbe) wurden die langen LV-Achsen sowie kontinuierliche Kurzachsenschnitte von 8 mm Schichtdicke mit einer segmentierten Inversion Recovery Turbo Gradienten-Echo-Sequenz (TR 8,0 ms, TE 4,0 ms, TL 180 - 240 ms, FA 20 °) gemessen. Jeder Kurzachsenschnitt wurde in 8 (basal, mitt-ventrikulär) bzw. 4 (apikal) Segmente unterteilt, und zum Vergleich von MRT mit PET und SPECT wurde die myokardiale Vitalität für jedes Segment auf einer Skala von 1 - 4 beurteilt. Ergebnisse: Insgesamt wurden 1753 Segmente ausgewertet. Die PET detektierte myokardiale Narben in 25 % der Segmente. In der MRT wurden Narben in 40 % der Segmente gefunden. Für die Detektion von Myokardnarben zeigte die MRT eine sehr niedrige Interobserver-Variabilität (kappa 0,92). Im segmentalen Vergleich zur Referenzmethode ergab sich eine Sensitivität und Spezifität von 84 % und 76 %. 18 % aller Segmente zeigten „late enhancement” bei normaler FDG-Aufnahme, wovon 83 % subendokardiales Enhancement aufwiesen. Schlussfolgerung: Aufgrund der hohen räumlichen Auflösung, des hohen Bildkontrastes und der Möglichkeit, auch nicht-transmurale Narben sicher zu detektieren, ist die kontrastverstärkte MRT eine vielversprechende, neue Methode zur Beurteilung der myokardialen Vitalität. Größere Studien mit dem Endpunkt Funktionsverbesserung nach Revaskularisation müssen zeigen, ob die MRT die PET als Referenzstandard in der Vitalitätsdiagnostik ablösen kann.
Abstract
Purpose: To compare contrast-enhanced magnetic resonance imaging (MRI) and positron emission tomography (PET) in the evaluation of myocardial viability. Methods: [18 F]-FDG-PET, [201 Tl]-TlCl-SPECT and contrast-enhanced MRI were performed in 29 patients with proven coronary artery disease and impaired left ventricular function to assess myocardial viability. MRI scans were done on a 1.5 T scanner (Magnetom Sonata, Siemens, Germany). After the steady-state free precession cine study, 0.2 mmol/kg BW of Gd-DPTA (Magnevist®, Schering, Germany) were administered i. v. For the detection of “late enhancement” (LE) indicating scar, left ventricular long axes and contiguous short axis slices of 8 mm thickness were scanned using an inversion recovery turbo gradient echo sequence (TR 8.0 ms; TE 4.0 ms; TI 180 - 240 ms; FA 20 °). The evaluation of LE and FDG uptake in PET with perfusion defect in SPECT was done using an 8 (basal, mid) and 4 (apical) segment model in all short axes to cover the entire ventricle. The transmural extent of LE was assessed using a 4-point score system. Comparison between the two modalities was performed on a segmental basis. Results: A total of 1753 segments were assessed. In MRI, 40 % of the segments showed myocardial scar, whereas PET revealed impaired uptake in 25 %. MRI obtained a very low interobserver variability in detecting myocardial scar (kappa 0.92). Using PET as the standard of reference in the segmental comparison, contrast-enhanced MRI yielded a sensitivity of 84 % and a specificity of 76 % for the detection of scar. 18 % of all segments showed LE but normal FDG uptake, 83 % of them referred to subendocardial scars. Conclusions: There is close agreement between contrast-enhanced MRI and PET in detecting transmural moycardial scars. Superior spatial resolution enables MRI to detect and quantify even subendocardial scar. Therefore, larger studies using functional recovery after revascularisation as an endpoint have to prove whether MRI might replace PET as the standard of reference in the assessment of myocardial viability.
Schlüsselwörter
Magnetresonanztomographie - Myokardvitalität - Positronen-Emissions-Tomographie - Koronare Herzkrankheit - Myokardinfarkt
Key words
Heart, MR - Magnetic Resonance (MR) - Contrast enhancement - Myocardium, infarction - Heart, ischemia - Myocardium, PET
Literatur
1
Pagley P R, Beller G A, Watson D D, Gimple L W, Ragosta M.
Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability.
Circulation.
1997;
96
793-800
2
Juergens K U, Wichter T, Renger B, Bruns H J, Reimer P, Tombach B, Vahlhaus C, Janssen F W, Breithardt G, Heindel W.
MR-tomographische Untersuchung der linksventrikulären Funktion bei Patienten mit koronarer Herzerkrankung und myokardialer Dysfunktion vor und nach koronarchirurgischer Revaskularisation.
Fortschr Röntgenstr.
2001;
173
211-217
3
Bax J J, Patton J A, Poldermans D, Elhendy A, Sandler M P.
18-Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography: cardiac applications.
Semin Nucl Med.
2000;
30
281-298
4
Beller G A.
Noninvasive assessment of myocardial viability.
N Engl J Med.
2000;
343
1487-1490
5
Sechtem U, Baer F M, Voth E, Theissen P, Schneider C A.
Stress functional MRI: detection of ischemic heart disease and myocardial viability.
J Magn Reson Imaging.
1999;
10
667-675
6
Baer F M, Voth E, Schneider C A, Theissen P, Schicha H, Sechtem U.
Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18 F]-fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability.
Circulation.
1995;
91
1006-1015
7
Baer F M, Theissen P, Schneider C A, Voth E, Sechtem U, Schicha H, Erdmann E.
Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization.
J Am Coll Cardiol.
1998;
31
1040-1048
8
Pinto F J.
Myocardial viability: the search for a perfect method is not over yet.
Eur Heart J.
2000;
21
1039-1040
9
Schwaiger M, Pirich C.
Positron emission tomography.
Z Kardiol.
2000;
89
59-66
10
Depre C, Vanoverschelde J L, Melin J A, Borgers M, Bol A, Ausma J, Dion R, Wijns W.
Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans.
Am J Physiol.
1995;
268
H1265-1275
11
Anselmi M, Golia G, Maines M, Marino P, Goj C, Turri M, Cavaggioni M, Braggio P, Giorgetti P G, Zardini P.
Comparison between low-dose dobutamine echocardiography and thallium-201 scintigraphy in the detection of myocardial viability in patients with recent myocardial infarction.
Int J Cardiol.
2000;
73
213-223
12
Rehwald W G, Fieno D S, Chen E L, Kim R J, Judd R M.
Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury.
Circulation.
2002;
105
224-229
13
Kim R J, Fieno D S, Parrish T B, Harris K, Chen E L, Simonetti O, Bundy J, Finn J P, Klocke F J, Judd R M.
Relationship of MRI delayed contrst enhancement to irreversible injury, infarct age, and contractile function.
Circulation.
1999;
10
1992-2002
14
Lauerma K, Niemi P, Hanninen H, Janatuinen T, Voipio-Pulkki L M, Knuuti J, Toivonen L, Makela T, Makijarvi M A, Aronen H J.
Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comaprison with FDG PET-initial experience.
Radiology.
2000;
217
729-736
15
Cerqueira M D, Weissman N J, Dilsizian V, Jacobs A K, Kaul S, Laskey W K, Pennell D J, Rubmerger J A, Ryan T, Verani M S.
Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart: A Statement of Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.
Circulation.
2002;
105
539-542
16
Kim R J, Wu E, Rafael A, Chen E L, Parker M A, Simonetti O, Klocke F J, Bonow R O, Judd R M.
The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction.
N Engl J Med.
2000;
343
1445-1453
17
Bax J J, van Eck-Smit B L, van der Wall E E.
Assessment of tissue viability: clinical demand and problems.
Eur Heart J.
1998;
19
847-858
18
Saeed M.
New concepts in characterization of ischemically injured myocardium by MRI.
Exp Biol Med (Maywood).
2001;
226
367-376
19
Lim T H, Choi S I.
MRI of myocardial infarction.
J Magn Reson Imaging.
1999;
10
686-693
20
Miller S, Eckstein F S, Vogel U, Hahn U, Scheule A M, Nagele T, Schick F, Claussen C D.
MR-Signalverhalten des 4 Wochen alten okklusiven Myokardinfarktes im Tierexperiment.
Fortschr Röntgenstr.
2000;
172
527-533
21
Fieno D S, Kim R J, Chen E L, Lomasney J W, Klocke F J, Judd R M.
Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing.
J Am Coll Cardiol.
2000;
36
1985-1991
22
Bax J J, Wijns W, Cornel J H, Visser F C, boersma E, Fioretti P M.
Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data.
J Am Coll Cardiol.
1997;
30
1451-1460
23
Baumgartner H, Porenta G, Lau Y K, Wutte M, Klaar U, Mehrabi M, Siegel R J, Czernin J, Laufer G, Sochor H, Schelbert H, Fishbein M C, Maurer G.
Assessment of myocardial viability by dobutamine echocardiography, positron emission tomography and thallium-201 SPECT: correlation with histopathology in explanted hearts.
J Am Coll Cardiol.
1998;
32
1701-1708
24
Wu E, Judd R M, Vargas J D, Klocke F J, Bonow R O, Kim R J.
Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction.
Lancet.
2001;
357
21-28
25
McFalls E O, Murad B, Liow J S, Gannon M C, Haspel H C, Lange A, Marx D, Sikora J, Ward H B.
Glucose uptake and glycogen levels are increased in pig heart after repetivie ischemia.
Am J Physiol Heart Circ Physiol.
2002;
282
H205-211
26
Sandstede J J, Lipke C, Beer M, Harre K, Pabst T, Kenn W, Neubauer S, Hahn D.
Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability.
Am J Roentgenol.
2000;
174
1737-1740
27
Klein C, Nekolla S G, Bengel F M, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M.
Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography.
Circulation.
2002;
105
162-167
28
Lima J A, Judd R M, Bazille A, Schulman S P, Atalar E, Zerhouni E A.
Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms.
Circulation.
1995;
92
1117-1125
29
Gerber B L, Rochitte C E, Bluemke D A, Melin J A, Crosille P, Becker L C, Lima J A.
Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction.
Circulation.
2001;
104
998-1004
30
Rogers W J, Kramer C M, Geskin G, Hu Y L, Theobald T M, Vido D A, Petrulo S, Reichek N.
Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction.
Circulation.
1999;
99
744-750
Dr. med. Jörg Barkhausen
Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Essen
Hufelandstraße 55
45122 Essen
Phone: + 49-201-723-1522
Fax: + 49-201-723-5682
Email: joerg.barkhausen@uni-essen.de