Zusammenfassung
Die radiologische Diagnostik intraaxialer Hirntumoren ist durch die Magnetresonanztomographie
(MRT) erheblich verbessert worden, besonders nach Einführung der paramagnetischen
Kontrastmittel. Mit konventionellen MR-Verfahren ist aber noch keine verlässliche
Unterscheidung zwischen Gliomen, Metastasen, primären Lymphomen und tumorsimulierenden
entzündlichen Erkrankungen möglich. In dieser Hinsicht vielversprechend sind neue,
funktionell-dynamische MR-Verfahren, mit denen sich nicht-invasiv die zerebrale Wasserdiffusion
und Mikrozirkulation erfassen lassen und die eine bessere Gewebecharakterisierung
erlauben als die herkömmlichen MR-Methoden. Die Perfusions-MRT erfasst die Hämodynamik
bis zur Kapillarebene. Mit Hilfe dieser neuen Methoden werden die Diagnose, die Differenzialdiagnose
und postoperativ auch die Verlaufskontrolle verbessert. Eine Unterscheidung zwischen
Tumor und Nicht-Tumor ist ebenso möglich wie eine zwischen niedergradigem und anaplastischem
Gliom. Zudem wird die Möglichkeit einer nicht-invasiven Tumorklassifikation eröffnet,
und höhergradige intraaxiale Tumoren können verlässlicher von tumorsimulierenden Herdläsionen
unterschieden werden. Auch bei der Therapieplanung liefern Diffusions- und Perfusions-MRT
entscheidende Zusatzinformationen, da diejenigen Tumorareale dargestellt werden können,
die bei Biopsie, Operation und Bestrahlung angegangen werden müssen. In der Nachsorge
erlauben die neuen Verfahren eine zuverlässige Differenzierung zwischen Therapieerfolg,
Tumorrezidiv und Therapiekomplikationen, etwa der Strahlennekrose.
Abstract
Despite the increased diagnostic accuracy of contrast material enhanced MR imaging,
specification and grading of brain tumors are still only approximate at best: neither
morphology, nor relaxation times or contrast material enhancement reliably predict
tumor histology or tumor grade. As histology and tumor grade strongly influence which
therapy concept is chosen, a more precise diagnosis is mandatory. With diffusion-
and perfusion-weighted MR imaging (DWI, PWI) it is now possible to obtain important
information regarding the cellular matrix and the relative regional cerebral blood
volume (rrCBV) of brain tumors, which cannot be obtained with standard MR techniques.
These dynamic-functional imaging techniques are very useful in the preoperative diagnosis
of gliomas, lymphomas, and metastases, as well as in the differentiation of these
neoplastic lesions from abscesses, atypical ischemic infarctions, and tumor-like manifestations
of demyelinating disease. Additionally, they appear suitable for determining glioma
grade and regions of active tumor growth which should be the target of stereotactic
biopsy and therapy. After therapy these techniques are helpful to better assess the
tumor response to therapy, possible therapy failure and therapy complications such
as radiation necrosis.
Schlüsselwörter
Hirntumoren - Perfusions-MRT - Diffusions-MRT - Differenzialdiagnose
Key words
Brain tumors - Perfusion-MRI - Diffusion-MRI - Differenzial diagnosis
Literatur
- 1
Earnest F I, Kelly P J, Scheithauer B W. et al .
Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement
with stereotactic biopsy.
Radiology.
1988;
166
823-287
- 2
Hartmann M, Sartor K.
Primäre maligne Lymphome des Gehirns.
Radiologe.
1997;
37
42-50
- 3
Hartmann M, Sator K.
Neuroradiologische Diagnostik bei Hirnmetastasen.
Der Onkologe.
2000;
6
930-938
- 4
Johnson P C, Hunt S J, Drayer B P.
Human cerebral gliomas: correlation of postmortem MR imaging and neuropathologic findings.
Radiology.
1989;
170
211-217
- 5 Russel D S, Rubinstein L J.
Pathology of tumours of the nervous system. 5th ed. London; Edward Arnold 1989
- 6
Leon S P, Folkerth R D, Black P M.
Microvessel density is a prognostic indicator for patients with astroglial brain tumors.
Cancer.
1996;
77
362-372
- 7
Fisel C R, Ackermann J L, Buxton R B, Garido L, Belliveau J W, Rosen B R, Brady T J.
MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical
simulations and applications to cerebral physiology.
Magn Reson med.
1991;
17
336-347
- 8
Rosen B R, Belliveau J W, Vevea J M, Brady T J.
Perfusion imaging with NMR contrast agents.
Magn Reson med.
1990;
14
249-265
- 9
Rosen B R, Belliveau J W, Chien D.
Perfusion imaging by nuclear magnetic resonance.
Magn Reson Q.
1989;
5
263-281
- 10
Heiland S, Sartor K.
Magnetresonanztomographie beim Schlaganfall: Methodische Grundlagen und klinische
Anwendung.
Fortschr Röntgenstr.
1999;
171
3-14
- 11
Rempp K A, Brix G, Wenz F, Becker C R, Gückel F, Lorenz W J.
Quantification of regional cerebral blood flow and volume with dynamic susceptibility
contrast-enhanced MR imaging.
Radiology.
1994;
193
637-641
- 12
Aronen H J, Gazit I E, Louis D N, Buchbinder B R, Pardo F S, Weiskoff R M, Harsh G R,
Cosgrove G R, Halpern E F, Hochberg F H.
Cerebral blood volume maps of gliomas: Comparison with tumor grade and histologic
findings.
Radiology.
1994;
191
41-51
- 13
Heiland S, Hartmann M, Sartor K.
Perfusions-MRT bei gestörter Blut-Hirn-Schranke: Fehlerquellen und Lösungsansätze.
Fortschr Röntgenstr.
2000;
172
812-816
- 14
Heiland S, Benner T, Debus J, Rempp K, Reith W, Sartor K.
Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions
with disrupted blood-brain-barrier.
Magn Reson Imaging.
1999;
17
21-27
- 15
Bruening R, Kwong K K, Vevea M J. et al .
Echo-planar MR determination of relative cerebral blood volume in human brain tumors:
T1 versus T2 weighting.
Am J Neuroradiol.
1996;
17
831-840
- 16
Sugahara T, Korogi Y, Kochi M. et al .
Correlation of MR imaging - determined cerebral blood volume maps with histological
and angiographic determination of vascularity of gliomas.
Am J Roentgenol.
1998;
171
1479-1486
- 17
Knopp E A, Cha S, Johnson G. et al .
Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging.
Radiology.
1999;
211
791-798
- 18
Castillo M, Scatliff J H, Bouldin T W, Suzuki K.
Radiologic-pathologic correlation: intracranial astrocytoma.
Am J Neuroradiol.
1992;
13
1609-1616
- 19
Rutherford G S, Hewlett R H, Truter R.
Contrast enhanced imaging is critical to nosology and grading.
Int J Neuroradiol.
1995;
1
28-38
- 20
Sugahara T, Korogi Y, Shigematsu Y. et al .
Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report.
J Comput Assist Tomogr.
1999;
23
232-237
- 21
Smith M, Thompson J, Castillo M. et al .
MR of recurrent high-grade astrocytomas after intralesional immunotherapy.
Am J Neuroradiol.
1996;
17
1065-1071
- 22
Tracqui P, Cruywagen G C, Woodward D E. et al .
A mathematical model of glioma growth: the effect of chemotherapy on spatiotemporal
growth.
Cell Prolif.
1995;
28
17-31
- 23
Alvord E J, Shaw C-M, Richards T.
The relative rates of cellular proliferation and infiltration and the histologic definition
of gliomas.
Can J Neurol Sci.
1993;
20
83
- 24
Cha S, Knopp E A, Johnson G, Litt A. et al .
Dynamic contrast-enhanced T2*-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and
carboplatin.
Am J Neuroradiol.
2000;
21
881-890
- 25
Le Bihan D.
Intravoxel incoherent motion imaging using steady-state free precision.
Magn Reson med.
1998;
7
346-351
- 26
Moseley M E, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asagari H,
Norman D.
Diffusion-weighted MR imaging in acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats.
Am J Neuroradiol.
1990;
11
423-429
- 27
Busza A L, Allen K L, King M D, van Bruggen N, Williams S R, Gadian D G.
Diffusion-weighted imaging studies of cerebral ischemia in gerbils. Potential relevance
to energy failure.
Stroke.
1992;
23
1602-1612
- 28
Zhong J, Petroff O A, Prichard J W, Gore J C.
Changes in water diffusion and relaxation properties of rat cerebrum during status
epilepticus.
Magn Reson Med.
1993;
30
241-246
- 29
Klatzo I.
Brain oedema following brain ischaemia and the influence of therapy.
Br J Anaesth.
1985;
57
(1)
18-22
- 30
LeBihan D, Breton E, Lallemand D. et al .
MR imaging of intravoxel incoherent motions: application to diffusion and perfusion
in neurologic disorders.
Radiology.
1986;
161
401-408
- 31
Beneviste H, Hedlund L W, Johnson G A.
Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic
resonance microscopy.
Stroke.
1992;
23
746-754
- 32
Ebisu T, Naruse S, Horikawa Y, Ueda S, Tanaka C, Uto M, Umeda M, Higuchi T.
Discrimination between different types of white matter edema with diffusion-weighted
MR imaging.
J Magn Reson Imaging.
1993;
3
863-868
- 33
Tien R D, Felsbarg G J, Friedmann H, Brown M, MacFall J.
MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar
pulse sequences.
Am J Roentgenol.
1994;
162
671-677
- 34
Brunberg J A, Chenevert T L, McKeever P E. et al .
In vivo MR determination of water diffusion coefficients and diffusion anisotropy:
correlation with structural alteration in gliomas of the cerebral hemispheres.
Am J Neuroradiol.
1995;
16
361-371
- 35
Provenzale J M, Petrella J R, Cruz L C. et al .
T2-washout effect on diffusion-weighted MR imaging: analysis in 11 cases of reversible
posterior leukoencephalopathy syndrome.
Am J Neuroradiol.
2001;
22
1455-1461
- 36
Basser P J, Pierpaoli C.
Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor
MRI.
Magn Reson B.
1996;
111
(3)
209-219
- 37
Pierpaoli C, Jezzard P, Basser P J. et al .
Diffusion tensor MR imaging of the human brain.
Radiology.
1996;
201
637-648
- 38
Steen R G.
Edema and tumor perfusion: characterization by quantitative 1H MR imaging.
Am J Roentgenol.
1992;
158
259-264
- 39
Okamoto K, Ito J, Ishikawa K, Sakai K, Tokiguchi S.
Diffusion-weighted echo-planar MR imaging in differential diagnosis of brain tumors
and tumor-like conditions.
Eur Radiol.
2000;
10
(8)
1342-1350
- 40
Gupta R K, Sinha U, Gloughesy T F, Alger J R.
Inverse correlation between choline magnetic resonance spectroscopy signal intensity
and the apparent diffusion coefficient in human glioma.
Magn Reson Med.
1999;
41
2-7
- 41
Sugahara T, Korogi Y, Kochi M. et al .
Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation
of cellularity in gliomas.
J Magn Reson Imaging.
1999;
9
53-60
- 42
Klisch J, Husstedt H, Hennings S, von Velthoven V, Pagenstecher A, Schumacher M.
Supratentorial primitive neuroectodermal tumors: diffusion-weighted MRI.
Neuroradiology.
2000;
42
393-398
- 43
Tsuchiya K, Yamakami N, Hachiya J, Saito I, Kobayashi H.
Multiple brain abscesses. Differentiation from cerebral metastases by diffusion-weighted
magnetic resonance imaging.
Int J Neuroradiol.
1998;
4
258-262
- 44
Desprechins B, Stadnik T, Koerts G. et al .
Use of diffusion-weighted MR imaging in the differential diagnosis between intracerebral
necrotic tumors and cerebral abscesses.
Am J Neuroradiol.
1999;
20
1252-1257
- 45
Hartmann M, Jansen O, Heiland S, Sommer C, Münkel K, Sartor K.
Restricted diffusion within ring-enhancement is not specific for brain abscess.
Am J Neuroradiol.
2001;
22
1738-1742
- 46
Bruening R, Brechtenbreiter C, Holzknecht N, Essig M, Hua Wu R, Simmons A, Heuck A,
Maschek A, Meusel M, Williams S CR, Cox T, Knopp M V, Reiser M.
Effects of three different doses of a bolus injection of gadodiamide: assessment of
rCBV maps in a blinded reader study.
Am J Neuroradiol.
2000;
21
1603-1610
Dr. med. Marius Hartmann
Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum
Heidelberg
Im Neuenheimer Feld 400
69120 Heidelberg
Phone: + 49-6221-567566
Fax: + 49-6221-564673
Email: marius_hartmann@med.uni-heidelberg.de