References
Selected overviews:
1a
Schmalz H.-G.
Siegel S. In Transition Metals for Organic
Synthesis
Vol. 1:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
p.550
1b
Hegedus LS.
Transition Metals in
the Synthesis of Complex Organic Molecules
2nd ed.:
University
Science Books;
Sausalito, CA:
1999.
Chap.
10.
1c
Pape AR.
Kaliappan KP.
Kündig EP.
Chem. Rev.
2000,
100:
2917
1d
Kamikawa K.
Uemura M.
Synlett
2000,
938
1e
Kamikawa K.
Watanabe T.
Uemura M.
J.
Synth. Org. Chem., Jpn.
2001,
59:
1078
1f
Carpentier J.-F.
Petit F.
Mortreux A.
Dufand V.
Basset J.-M.
Thivolle-Cazat J.
J. Mol. Catal.
1993,
81:
1
2a
Schmalz H.-G.
Siegel S.
Bats JW.
Angew. Chem., Int. Ed.
Engl.
1995,
34:
2383 ; Angew. Chem. 1995, 107, 2597
2b
Schmalz H.-G.
Siegel S.
Schwarz A.
Tetra-hedron
Lett.
1996,
37:
2947
2c
Hoffmann O.
Schmalz H.-G.
Synlett
1998,
1426
2d
Schwarz O.
Brun R.
Bats JW.
Schmalz H.-G.
Tetrahedron Lett.
2002,
43:
1009
3a
Merlic CA.
Walsh JC.
J. Org. Chem.
2001,
66:
2265
3b
Taniguchi N.
Uemura M.
Synlett
1997,
51
3c
Taniguchi N.
Hata T.
Uemura M.
Angew.
Chem. Int. Ed.
1999,
38:
1232
3d
Taniguchi N.
Uemura M.
Tetrahedron
1998,
54:
12775
3e
Monovich LG.
Le Huerou Y.
Ronn M.
Molander GA.
J.
Am. Chem. Soc.
2000,
122:
52
4a
Schmalz H.-G.
de Koning CB.
Bernicke D.
Siegel S.
Pfletschinger A.
Angew. Chem. Int. Ed.
1999,
38:
1620
4b
Schmalz H.-G.
Siegel S.
Bernicke D.
Tetrahedron Lett.
1998,
39:
6683
5a
Kagan HB.
New J. Chem.
1990,
14:
453
5b
Molander GA.
Chem. Rev.
1992,
92:
29
5c
Inanaga J.
Heteroat.
Chem.
1990,
3:
75
6
Yeh M.-CP.
Wang F.-C.
Tu J.-J.
Chang S.-C.
Chou C.-C.
Liao J.-W.
Organometallics
1998,
17:
5656
7
Siegel S.
PhD Thesis
TU Berlin;
Berlin:
1998.
8 Only one enantiomer of racemic compounds
is depicted.
9a
Semmelhack MF. In Comprehensive
Organometallic Chemistry II
Vol. 12:
Abel EW.
Stone FGA.
Wilkinson G.
Pergamon
Press;
New York:
1995.
p.979
9b
Semmelhack MF. In Comprehensive Organometallic Chemistry
II
Vol. 12:
Abel EW.
Stone FGA.
Wilkinson G.
Pergamon Press;
New York:
1995.
p.1039
9c
Rose-Munch F.
Gagliardini V.
Renard C.
Rose E.
Coord. Chem. Rev.
1998,
178-180:
249
9d
Rose-Munch F.
Rose E.
Curr. Org. Chem.
1999,
3:
445
10
Mahaffy CA.
Pauson PL.
Inorg. Synth.
1990,
28:
136
11
Inanaga J.
Ishikawa M.
Yamaguchi M.
Chem.
Lett.
1987,
1485
12
Batey RA.
Motherwell WB.
Tetrahedron Lett.
1991,
32:
6649
13 Typical Experimental Procedure: A
flame dried Schlenk flask was charged with 15 mL of a 0.1 M solution
of SmI2 in THF and HMPA (1.5 mL) under argon. After cooling
to 0 °C, a solution of the fluorobenzene-Cr(CO)3 complex(11) (116 mg, 0.5 mmol), tBuOH
(145 µL, 1.5 mmol) and acetone (45 µL, 0.6 mmol)
in THF (3 mL) was added dropwise via cannula over a period of 5
min. The resulting mixture was stirred at 0 °C for 90 min
and for 60 min at r.t. before it was quenched with saturated aqueous
NaHCO3 (5 mL). After stirring for another 5 min, the
reaction mixture was filtered through a short pad of Celite® and
washed with MTBE. The organic layer was washed with saturated NaHCO3 solution, brine,
dried over Na2SO4 and evaporated. The residue
was purified by chromatography (20g of SiO2, CyH-EtOAc = 3:1)
to give 105 mg (77%) of complex 12 as
yellow crystalline compound. Mp 73 °C. 1H
NMR (270 MHz, CDCl3): 1.56 (s, 6 H); 5.31 (t, 2 H, J = 6.5 Hz); 5.42 (t, 1 H, J = 6.5 Hz); 5.64 (d, 2 H, J = 6.5 Hz). 13C
NMR (67.7 MHz, CDCl3): 31.3; 70.8; 91.3; 91.5; 93.4;
121.3; 232.53. FT-IR (ATR): 3576; 3483; 3092; 2985; 2932; 1948;
1892; 1854; 1457; 1415; 1366; 1168; 1154; 1096; 1054; 966; 861;
821; 662 cm-1. HRMS: for C12H12CrO4 calcd.:
272.0141; found: 272.0144.
Compound 13:
Mp 98 °C. 1H NMR (400 MHz, CDCl3): 1.58-1.70
(m, 5 H); 1.70-1.86 (m, 5 H); 5.26 (t, 2 H, J = 6.5 Hz);
5.44 (t, 1 H, J = 6.5 Hz); 5.68
(d, 2 H, J = 6.5 Hz). 13C NMR
(100 MHz, CDCl3): 21.8; 25.2; 38.9; 71.4; 90.8; 92.1; 94.0;
121.8; 233.4. FT-IR (ATR): 3582; 3093; 2936; 2859; 1959; 1869; 1449;
1411; 1350; 1309; 1261; 1203; 1153; 1123; 1034; 1022; 978; 849;
814; 688 cm-1. HRMS: for C15H16CrO4 calcd.:
312.0454; found: 312.0454.
Compound 14:
Mp 71 °C. 1H NMR (270 MHz, CDCl3): 1.77-2.09
(m, 8 H); 5.31-5.43 (m, 3 H); 5.64 (dd, 2 H, J
1 = 6.5
Hz, J
2 = 2 Hz). 13C
NMR (67.7 MHz, CDCl3): 24.3; 42.4; 81.6; 91.4; 92.1;
92.8; 118.7; 233.4. FT-IR (ATR): 3582; 3443; 3088; 2958; 2875; 1957;
1865; 1458; 1412; 1327; 1295; 1233; 1189; 1152; 1009; 949; 903;
882; 817; 661
cm-1. HRMS:
for C14H14CrO4 calcd.: 298.0297;
found: 298.0293.
Compound rac-15: Mp 119 °C. 1H
NMR (400 MHz, CDCl3): 1.64 (s, 3 H); 1.97 (t, 2 H, J = 5.5 Hz); 3.79 (dtt, 1 H, J
1 = 10 Hz, J
2 = 5.5 Hz, J
3 = 5 Hz); 3.90
(dtt, 1 H, J
1 = 10 Hz, J
2 = 5.5 Hz, J
3 = 5 Hz); 5.25
(t, 1 H, J = 6 Hz); 5.29 (t,
1 H, J = 6.5 Hz); 5.43 (t, 1
H, J = 6 Hz); 5.45 (d, 1 H, J = 6 Hz); 5.80 (d, 1 H, J = 6.5 Hz). 13C
NMR (100 MHz, CDCl3): 29.1; 44.9; 59.7; 70.6; 90.5; 90.6;
91.7; 92.0; 93.7; 120.0; 233.1. FT-IR (ATR): 3363; 2978; 2893; 1958;
1870; 1457; 1413; 1378; 1298; 1153; 1083; 1054; 1014; 965; 881;
816; 662
cm-1. HRMS: for C13H14CrO5 calcd.:
302.0246; found: 302.0247.
Compound rac-16: Mp 114 °C. 1H
NMR (400 MHz, CDCl3): 1.60 (s, 3 H); 2.72 (d, 1 H, J = 16 Hz); 2.79 (d, 1 H, J = 16 Hz); 3.74 (s, 3 H); 5.22
(t, 2 H, J = 6.5 Hz); 5.46 (t,
1 H, J = 6.5 Hz); 5.62 (d, 1
H, J = 6.5 Hz); 5.68 (d, 1 H, J = 6.5 Hz). 13C
NMR (100 MHz, CDCl3): 30.0; 46.6; 52.1; 70.9; 89.6; 89.7;
91.8; 92.1; 94.0; 117.9; 172.0; 232.7. FT-IR (ATR): 3482; 3092;
2954; 2927; 1958; 1866; 1854; 1713; 1457; 1438; 1412; 1374; 1342;
1207; 1180; 1095; 1069; 1049; 1009; 958; 857; 816; 660 cm-1.
HRMS: for C14H14CrO6 calcd.: 330.0195;
found: 330.0195.
14 Preliminary attempts to employ aldehydes
instead of ketones under similar conditions were not successful.
In these cases, only the reduced aldehydes (alcohols) and some pinacol-type
coupling products were formed, and the unchanged fluorobenzene-Cr(CO)3 derivatives
could be reisolated.
15
Rose-Munch F.
Rose E.
Semra A.
Mignon L.
Garcia-Oricain J.
Knobler C.
J. Organomet. Chem.
1989,
363:
297
16
Merlic CA.
Miller MM.
Hietbrink BN.
Houk KN.
J.
Am. Chem. Soc.
2001,
123:
4904
17
Lin HC.
Zhang HJ.
Yang L.
Li CZ.
Org. Lett.
2002,
4:
823