References
1 New address: K. Matsumoto, Department
of Chemistry, College of Science and Engineering, Meisei University, Hodokubo,
Hino, Tokyo 191-8506, Japan.
2 Faculty of Pharmaceutical Science,
Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan.
3a
Perlmutter P.
Conjugate
Addition Reactions in Organic Synthesis, Tetrahedron Organic Chemistry
Series
Vol. 9:
Pergamon;
Oxford:
1992.
3b
Rossiter BE.
Swingle NM.
Chem.
Rev.
1992,
92:
771
4a
Altenbach H.-J.
Holzapfel W.
Angew.
Chem., Int. Ed. Engl.
1990,
29:
67
4b
Mikolajczyk M.
Mikina M.
J. Org. Chem.
1994,
59:
6760
4c
Shirasaki M.
Sasai H.
Arai T.
Shibasaki M.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1236
4d
Arai T.
Sasai H.
Yamaguchi K.
Shibasaki M.
J. Am. Chem. Soc.
1998,
120:
442
4e
Seepresaud M.
Al-Abed Y.
Org. Lett.
1999,
1:
1463
4f
Perch NS.
Widenhoefer RA.
J.
Am. Chem. Soc.
1999,
121:
6960
4g
Per T.
Widenhoefer RA.
Org. Lett.
2000,
2:
1469
4h
Muci AR.
Bercaw JE.
Tetrahedron
Lett.
2000,
41:
7609
4i
Satoh T.
Yoshida M.
Ota H.
Tetrahedron
Lett.
2001,
42:
9241
4j
Perrard T.
Plaquevent J.-C.
Desmurs J.-R.
Hebrault D.
Org. Lett.
2000,
2:
2959
4k
Takayama Y.
Okamoto S.
Sato F.
J.
Am. Chem. Soc.
1999,
121:
3559
5a
Enders D. In
Asymmetric
Synthesis
Vol. 3:
Morrison JD.
Academic Press;
New York:
1984.
5b
Saito S.
Nakadai M.
Yamamoto H.
Synlett
2000,
1107
5c
Christoffers J.
Mann A.
Angew. Chem. Int. Ed.
2000,
39:
2752
6a
Hatanaka M.
Ishida A.
Tanaka Y.
Ueda I.
Tetrahedron
Lett.
1996,
37:
401
6b
Hatanaka M.
Tanaka Y.
Ueda I.
Tetrahedron
Lett.
1995,
36:
3719
7
Kitano H.
Minami S.
Morita T.
Matsumoto K.
Hatanaka M.
Synthesis
2002,
739
Reviews:
8a
Barbachyn MR.
Johnson CR. In
Asymmetric Synthesis
Vol.
4:
Morrison JD.
Academic
Press;
New York:
1984.
8b
Solladie G.
Synthesis
1981,
185
8c
Waker AJ.
Tetrahedron: Asymmetry
1992,
3:
961
8d
Nakamura S.
Toru T.
J. Syn. Org. Chem. Jpn.
2002,
60:
115
9a
Casey M.
Manage AC.
Nezhat L.
Tetrahedron Lett.
1988,
29:
5821
9b
Casey M.
Manage AC.
Tetrahedron Lett.
1989,
30:
5821
9c
Casey M.
Gairns RS.
Geraghty GM.
Kelly CJ.
Murphy A.
Walker AJJ.
Synlett
2000,
1721
9d
Hua DH.
J.
Am. Chem. Soc.
1986,
108:
3835
9e
Nakamura S.
Watanabe Y.
Toru T.
J.
Org. Chem.
2000,
65:
1758
10
Typical Procedure;
Preparation of (4
S
,5
R
)-4-(2-Oxo-2-phenylethyl)-5-[(
R
)-
p
-toluenesulfinyl]cyclopent-2-enone(5a). To a solution of 2 (159
mg, 0.5 mmol) in THF (5 mL) was added a 1.56 M BuLi-hexane
solution (0.39 mL, 0.6 mmol) at -78 °C
and the mixture was stirred for 30 min at that temperature. To the
mixture was added a solution of 3 (73 mg,
0.25 mmol) in THF (3 mL) and stirring was continued for 1 h at -78 °C.
To this reaction mixture was successively added TMEDA (75 µL,
0.5 mmol), a solution of CuCN (45 mg, 0.5 mmol) and LiCl (43 mg,
1.0 mmol) in THF (3 mL) and then a solution of 4a (58
mg, 0.25 mmol) in THF (3 mL). After being stirred for 1 h at -78 °C,
the reaction mixture was treated with acetic acid (29 µL,
0.5 mmol) and sat. aq NaHCO3 (1 mL) and then stirred
for 12 h at r.t. The reaction mixture was poured into brine and extracted
with EtOAc. The extract was dried and evaporated in vacuo. The residue
was purified by flash chromatography (hexane-EtOAc, 2:1)
to give 5a (55 mg, 53%) as colorless needles;
mp 147-148 °C (hexane-EtOAc). Spectroscopic data
of 5a: 1H NMR (500
MHz, CDCl3): δ = 2.35
(s, 3 H), 3.19 (dd, 1 H, J = 18.0,
8.9 Hz), 3.53 (dd, 1 H, J = 18.0,
8.9 Hz), 3.88 (s, 1 H), 4.43 (m, 1 H), 6.32 (s, 1 H), 7.26 (bt,
2 H, J = 8.8
Hz), 7.43 (m, 3 H), 7.44 (d, 2 H, J = 7.9
Hz), 7.50 (m, 2 H), 7.53 (d, 2 H, J = 7.9
Hz), 7.58 (br t, 1 H, J = 8.8
Hz), 7.84 (br d, 2 H, J = 8.8
Hz).
13C NMR (125 MHz, CDCl3): δ = 198.34,
197.28, 176.23, 141.86, 136.61, 136.17, 133.64, 132.34, 131.46,
129.55, 129.37, 129.17, 128.71, 128.02, 127.14, 124.81, 72.41, 41.75,
38.36, 21.44. IR (Nujol): ν = 1686,
1596, 1572, 1180, 1046, 732, 690 cm-1.
FABMS: m/z (%) = 415(6) [M+ + 1]. Anal.
Calcd for C26H22O3S: H, 5.35; C,
75.34. Found: H, 5.22; C, 75.03.
11 Crystal Data: C26H22O3S, M = 414.52,
triclinic, space group P-1 (#2), Z = 2, a = 10.213(1) Å, b = 13.043(1) Å, c = 8.9152(6) Å, α = 102.298(8)°, β = 101.744(8)°, γ = 67.742(8)°, V = 1063.9(2) Å3, Dc = 1.294
g/cm3, F(000) = 436, µ (Cu Kα) = 15.05
cm-, T = 296
K, colorless prism, crystal size = 0.1 × 0.1 × 0.1
mm, 3373 measured reflections, 2203 reflections with I > 3σ(I) by Rigaku AFC-5R diffractometer, R = 0.043, Rw = 0.049,
359 parameters. Full information on the crystal structure can be
ordered from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax:+44(1223)336033;
e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.ac.uk),
upon request, quoting the deposition number CCDC 185027.
12
8a: Mp 47-48 °C
(hexane-EtOAc). 1H NMR (500 MHz, CDCl3): δ = 1.96
(s, 3 H), 2.39 (s, 3 H), 3.22 (dd, 1 H, J = 17.7,
6.4 Hz), 3.52 (dd, 1 H, J = 17.7,
5.2 Hz), 3.68 (m, 1 H), 3.90 (d, 1 H, J = 2.1
Hz), 5.79 (s, 1 H), 7.28 (d, 2 H, J = 7.9
Hz), 7.48 (d, 2 H, J = 7.9
Hz), 7.50 (br t, 2 H, J = 8.3 Hz),
7.61 (br t, 1 H, J = 8.3
Hz), 7.95 (br d, 2 H, J = 8.3
Hz). 13C NMR (125 MHz, CDCl3): δ = 198.96,
197.32, 179.83, 141.91, 136.19, 133.76, 131.51, 129.59, 129.18,
128.85, 128.10, 125.01, 71.99, 40.93, 40.43, 21.47, 17.64. IR (Nujol): ν = 1680,
1628, 1602, 752, 722 cm-1. EIMS: m/z (%) = 336(61) [M+ - 16],
231(9), 216(95), 213(69), 105(100), 77(86). HRMS (EI): Calcd for
C21H20O3S: 352.1133. Found: 352.1102. 9a: Oil. 1H NMR (500
MHz, CDCl3): δ = 2.11
(s, 3 H), 2.34 (s, 3 H), 2.60 (dd, 1 H, J = 17.7,
8.9 Hz), 2.98 (dd, 1 H, J = 17.7,
3.4 Hz), 3.48 (m, 1 H), 3.89 (d, 1 H, J = 1.5
Hz), 6.22 (s, 1 H), 7.25 (d, 2 H, J = 8.2
Hz), 7.43 (m, 5 H), 7.51 (d, 2 H, J = 8.2
Hz). 13C NMR (125 MHz, CDCl3): δ = 205.77,
198.32, 176.15, 142.00, 136.22, 132.21, 131.47, 129.55, 129.06,
128.83, 127.08, 124.99, 72.31, 46.41, 37.57, 30.19, 21.42. IR(neat): ν = 3536,
3052, 1688, 1594, 1182, 1082, 772, 732 cm-1. EIMS: m/z (%) = 316(38) [M+ - 16],
193(55), 57(100). HRMS (EI): Calcd for C21H20O3S:
352.1133. Found: 352.1102.
13
Typical Procedure:
Preparation of (4
S
)-4-[2-(2,4-Dimethylphenyl)-2-oxoethyl]-3-methylcyclopent-2-enone(14). To a solution of (50 mg, 0.14 mmol)
in MeOH (20 mL) was added formic acid (60 µL, 1.56 mmol)
and activated zinc dust (400 mg, 6.1 mmol) at -20 °C.
The mixture was stirred for 10 min at that temperature and then filtered.
The filtrate was evaporated in vacuo and the residue was shaken
with a mixture of aq NaHCO3 and EtOAc. The aq layer was
extracted with EtOAc and the combined organic layers were dried
(MgSO4) and evaporated. The residue was purified by flash
chromatography (hexane-EtOAc, 5:1) to give 14 (24
mg, 80%) as a colorless solid; mp 74-75 °C
(hexane-EtOAc). The spectroscopic data of the product were
identical with those of the racemic sample reported previously (ref.
[7]
). The ee of the cyclopentenone was
determined to be 98% (HPLC conditions: Daicel Chiralcel
OD-H, 45 × 250 mm, λ = 254
nm, hexane-propan-2-ol, 9:1, tmajor = 42.6
min, tminor = 35.4 min). Compounds 10, 11 and 12 showed identical spectroscopic data
with the corresponding racemic samples previously reported (ref.
[7]
). Other new compounds gave satisfactory
spectroscopic and analytical and/or high resolution mass
data.