References
1 Presented in part at the 70th Annual
Meeting of the Chemical Society of Japan, Tokyo, March 1996, Abstr. 2J392.
2 Deceased Oct. 4, 1995. Address all
correspondence to Dr. Masato Ito, Department of Applied Chemistry,
Graduate School of Science and Engineering, Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; E-mail: mito@o.cc.titech.ac.jp.
3
Ito M.
Shirakawa E.
Takaya H.
Synlett
1996,
635
For reviews on the chemistry of
ynolates, see:
4a
Stang PJ.
Zhdankin VV. In The Chemistry of Triple-bonded Functional
Groups
Patai S.
John
Wiley & Sons;
Chichester:
1994.
p.1136-1145
4b
Shindo M.
Chem.
Soc. Rev.
1998,
27:
367
5a
Kai H.
Iwamoto K.
Chatani N.
Murai S.
J. Am. Chem.
Soc.
1996,
118:
7634
5b
Akai S.
Kitagaki S.
Naka T.
Yamamoto K.
Tsuzuki Y.
Matsumoto K.
Kita Y.
J.
Chem. Soc., Perkin Trans. 1
1996,
1705
5c
Iwamoto K.
Kojima M.
Chatani N.
Murai S.
J. Org. Chem.
2001,
66:
169
6a
Sakurai H.
Shirahata A.
Sasaki K.
Hosomi A.
Synthesis
1979,
740
6b
Efimova IV.
Kazankova MA.
Lutsenko IF.
Zh. Obshch. Khim.
1985,
55:
1647
7 Recently, Ishikawa and co-workers
reported (Me3Si)3SiLi undergoes nucleophilic
attack onto the silicon center of 1a in THF,
but their attempts to trap the resulting silylethynolate were unsuccesful: Naka A.
Ohshita J.
Kunai A.
Lee ME.
Ishikawa M.
J. Organomet. Chem.
1999,
574:
50
8a
n-BuLi is known to react with 1a at the ketene sp-carbon in
the absence of HMPA: Ponomarev SV.
rman MB.
Lebedev SA.
Pechurina SY.
Lutsenko IF.
Zh. Obsh. Khim.
1971,
41:
127
8b Also see: Woodbury RP.
Long NR.
Rathke MW.
J. Org. Chem.
1978,
43:
376
8c For the reaction of phosphorous
ylides with 1a or 1b leading
to mono-silylated allenes, see: Kita Y.
Tsuzuki Y.
Kitagaki S.
Akai S.
Chem. Pharm.
Bull.
1994,
42:
233
Analytical data for 2:
9a 1,1-Bis(trimethylsilyl)-2-[(1,1-dimethylethyl)dimethylsilyl]oxy-2-phenylethene
(2, R = Ph). 1H
NMR (CDCl3) δ: -0.31 (s, 9 H), -0.29
(s, 6 H), 0.25 (s, 9 H), 0.86 (s, 9 H), 7.18-7.29 (m, 5
H); 13C NMR (CDCl3) δ: -3.1,
2.1, 2.4, 18.6, 26.3, 109.9, 127.8, 128.0, 129.6, 142.0, 165.9.
Anal. Calcd for C20H38OSi3: C,
63.42; H, 10.11. Found: C, 63.31; H, 10.35.
9b 1,1-Bis(trimethyl-silyl)-2-[(1,1-dimethylethyl)dimethylsilyl] oxy-1-propene (2, R = Me). This
compound was not obtained in pure form and thus only 1H
and 13C NMR spectral data were shown.
1H
NMR (CDCl3) δ: 0.12 (s, 9 H), 0.14 (s, 9 H),
0.20 (s, 6 H), 0.95 (s, 9 H), 2.03 (s, 3 H); 13C
NMR (CDCl3) δ: -2.3, 0.1, 2.7, 2.9,
19.1, 26.5, 107.1, 164.5.
10 Rathke’s report on the
isolation of 1a by warming a THF solution
of lithio t-butyl bis(trimethylsilyl)acetate
to 25 °C may indicate that the eliminated t-BuOLi
does not undergo C-Si bond cleavage of 1a under
their condition: Sullivan DF.
Woodbury RP.
Rathke MW.
J.
Org. Chem.
1977,
42:
2038
11a
General Procedure for the Preparation of Disilylketenes
using
t
-BuOK:
Preparation of [(1,1-dimethylethyl)dimethylsilyl](trimethylsilyl)ketene(1b) from 1a is
representative. Disilyllketene 1a (296.5
mg, 1.59 mmol) was dissolved in THF (1.6 mL) and HMPA (0.28 mL, 1.61
mmol). To the resulting yellow solution was added a solution of t-BuOK (180.0 mg, 1.60 mmol) in THF (3.2
mL) at 0 °C. The mixture was stirred for 1 h at the same temperature
and quenched by t-BuMeSiOTf (0.37 mL,
1.61 mmol). After stirring the resulting solution for 2 h at room temperature,
the reaction mixture was diluted with pentane and washed with water.
Then the organic layer was dried by Na2SO4 and
filtered through Florisil. Evaporation of the solvent followed by
silica-gel chromatography (Wakogel C-200) afforded 1b as
a colorless oil (305.4 mg, 84% yield).
11b We were unable to detect
the formation of any
O-silylated
product (silyl silylethynyl ether) under these conditions. See ref.
[13c]
.
11c The use of carbon electrophiles (MeI,
Me2SO4, Me3OBF4, or
PhCHO) instead of R3SiX resulted in the formation of
intractable mixtures under similar conditions.
Analytical data for new disilylketenes
(silicon-attached quarternary carbon was not observed in 13C
NMR spectra):
12a (Dimethylphenylsilyl)(trimethylsilyl)ketene(1d).
1H NMR
(CDCl3) δ: 0.14 (s, 9 H), 0.52 (s, 6 H), 7.40-7.43
(m, 3 H), 7.59-7.63 (m, 2 H); 13C
NMR (CDCl3) δ: -0.2, 1.2, 127.8, 129.4,
133.6, 138.3, 166.9; IR(neat) 2084 cm-1 (CCO);
MS (70 eV) m/z 248 (M+);
bp 62-70 °C (0.05 mmHg). Anal. Calcd for C13H20OSi2:
C, 62.84; H, 8.11. Found: C, 63.10; H, 8.28.
12b Bis(triphenylsilyl)ketene(1k).
1H
NMR (CDCl3) δ: 7.21-7.49 (m, 30 H); 13C
NMR (CDCl3) δ: 127.7, 127.8, 129.7, 129.8, 133.7,
135.2, 135.4, 135.9, 166.2; IR(nujol) 2080 cm-1 (CCO);
MS (70 eV) m/z 558 (M+);
mp 165-166 °C. Anal. Calcd for C38H30OSi2:
C, 81.67; H, 5.41. Found: C, 81.40; H, 5.32.
13a
Ponomarev SV.
Zolotareva AS.
Ezhov RN.
Kuznetsov YV.
Petrosyan VS.
Russ.
Chem. Bull.
2001,
50:
1093
13b
Ponomarev SV.
Zolotareva AS.
Leont’ev AS.
Kuznetsov YV.
Petrosyan VS.
Russ. Chem. Bull.
2001,
50:
1088
13c
Groh BL.
Magrum GR.
Barton TJ.
J. Am. Chem. Soc.
1987,
109:
7568
13d
Buncel E.
Edlund TKVU.
J.
Organomet. Chem.
1992,
437:
85
13e
Pons J.-M.
Kocienski P.
Tetrahedron Lett.
1989,
30:
1833
13f
Grishin YK.
Ponomarev SV.
Lebedev SA.
Zh. Org. Khim.
1974,
10:
404
13g
Valent’ E.
Perics MA.
Serratosa F.
J. Org. Chem.
1990,
55:
395
13h
Stang PJ.
Roberts KA.
J.
Am. Chem. Soc.
1986,
108:
7125
13i
Pericàs MA.
Serratosa F.
Valent’ E.
Tetrahedron
1987,
43:
2311
14
Bassindale AR.
Glynn SJ.
Taylor PG. In The Chemistry of
Organic Silicon Compounds
Part 1, Vol. 2:
Rappoport Z.
Apeloig Y.
John
Wiley & Sons;
Chichester:
1998.
Chap.
7.
15a Examples
for a related alkali metal alkoxide-induced C-Si bond cleavage
reaction: Sakurai H.
Nishiwaki K.
Kira M.
Tetrahedron Lett.
1973,
42:
4193 ; see also ref. 13d
15b We suppose that HMPA
may coordinate onto the smaller silicon center of the disilylketene
to form a penta-coordinate silicate, and facilitate the alkoxide-induced
Si-C bond cleavage.