References
<A NAME="RU03302ST-1">1</A> For a review of glycosylation in
the Golgi apparatus, see:
Tsuji S.
J.
Biochem.
1996,
120:
1
<A NAME="RU03302ST-2">2</A> For a review of intercellular adhesion
, see:
Glycoscience: Chemistry and Chemical
Biology
Fraiser-Reid B.
Tatsuta K.
Thiem J.
Springer-Verlag;
Tokyo:
2001.
<A NAME="RU03302ST-3A">3a</A>
Müller B.
Schaub C.
Schmidt RR.
Angew. Chem. Int. Ed.
1998,
37:
2893
<A NAME="RU03302ST-3B">3b</A>
Compain P.
Martin OR.
Bioorg. Med. Chem.
2001,
9:
3077
<A NAME="RU03302ST-4">4</A>
Dahn U.
Hagenmaier H.
Hohne H.
Konig WA.
Wolf G.
Zahner H.
Arch.
Microbiol.
1976,
107:
143
<A NAME="RU03302ST-5">5</A>
Calib E.
Antimicrob.
Agents Chemother.
1991,
35:
170
<A NAME="RU03302ST-6A">6a</A>
Vassilev VP.
Uchiyama T.
Kajimoto T.
Wong C.-H.
Tetrahedron
Lett.
1995,
36:
4081
<A NAME="RU03302ST-6B">6b</A>
Vassilev VP.
Uchiyama T.
Kajimoto T.
Wong C.-H.
Tetrahedron
Lett.
1995,
36:
5063
<A NAME="RU03302ST-6C">6c</A>
Uchiyama T.
Vassilev VP.
Kajimoto T.
Wong W.
Huang H.
Lin C.-C.
Wong C.-H.
J. Am.
Chem. Soc.
1995,
117:
5395
<A NAME="RU03302ST-6D">6d</A>
Uchiyama T.
Woltering TJ.
Wong W.
Lin C.-C.
Kajimoto T.
Takebayashi M.
Weitz-Schmidt G.
Asakura T.
Noda M.
Wong C.-H.
Bioorg. Med. Chem.
1996,
4:
1149
<A NAME="RU03302ST-6E">6e</A>
Shibata K.
Shingu K.
Vassilev VP.
Nishide K.
Fujita T.
Node M.
Kajimoto T.
Wong C.-H.
Tetrahedron Lett.
1996,
37:
2791
<A NAME="RU03302ST-6F">6f</A>
Miura T.
Kajimoto T.
Chirality
2001,
13:
577
<A NAME="RU03302ST-6G">6g</A>
Fujii M.
Miura T.
Kajimoto T.
Ida Y.
Synlett
2000,
1046
<A NAME="RU03302ST-7A">7a</A>
Yamada H.
Kumagai H.
Nagate T.
Yoshida H.
Biochem.
Biophys. Res. Commun.
1970,
39:
53
<A NAME="RU03302ST-7B">7b</A>
Yamada H.
Kumagai H.
Nagate T.
Yoshida H.
Agric. Biol. Chem.
1971,
35:
1340
<A NAME="RU03302ST-7C">7c</A>
Kumagai H.
Nagatae T.
Yoshida H.
Yamada H.
Biochim. Biophys. Acta
1972,
258:
779
<A NAME="RU03302ST-7D">7d</A>
Herbert RB.
Wilkinson B.
Ellames GJ.
Kunec EK.
J.
Chem. Soc., Chem. Commun.
1993,
205
<A NAME="RU03302ST-7E">7e</A>
Liu J.-G.
Nagata S.
Dairi T.
Misono H.
Shimizu S.
Yamada H.
Eur. J. Biochem.
1997,
245:
289
<A NAME="RU03302ST-7F">7f</A>
Kataoka M.
Wada M.
Nishi K.
Yamada H.
Shimizu S.
FEMS Microbiol.
Lett.
1997,
151:
245
<A NAME="RU03302ST-7G">7g</A>
Liu J.-Q.
Dairi T.
Kataoka M.
Shimizu S.
Yamada H.
J. Bacteriol.
1997,
179:
3555
<A NAME="RU03302ST-7H">7h</A>
Liu J.-Q.
Dairi T.
Itoh N.
Kataoka M.
Shimizu S.
Yamada H.
Eur. J. Biochem.
1998,
255:
220
<A NAME="RU03302ST-7I">7i</A>
Liu J.-G.
Ito S.
Dairi T.
Itoh N.
Shimizu S.
Yamada H.
Appl. Microbiol. Biotechnol.
1998,
49:
702
<A NAME="RU03302ST-7J">7j</A>
Liu J.-G.
Ito S.
Dairi T.
Itoh N.
Kataoka M.
Shimizu S.
Yamada H.
Appl. Environ.
Microbiol.
1998,
64:
549
<A NAME="RU03302ST-8">8</A>
Miura T.
Fujii M.
Shingu K.
Koshimizu I.
Naganoma J.
Kajimoto T.
Ida Y.
Tetrahedron
Lett.
1998,
39:
7313
<A NAME="RU03302ST-9">9</A>
9a: 1H
NMR (CDCl3) δ = 1.16 (t, 6 H, J = 7.0 Hz),
3.50 (dq, 2 H, J = 9.5,
7.0 Hz), 3.73 (dq, 2 H, J = 9.5,
7.0 Hz), 3.80 (d, 2 H, J = 5.5
Hz), 4.68 (t, 1 H, J = 5.5
Hz), 5.74 (d, 1 H, J = 7.5
Hz), 7.32 (d, 1 H, J = 7.5
Hz).
<A NAME="RU03302ST-10A">10a</A>
Martinez AP.
Lee WW.
J. Org. Chem.
1965,
30:
317
<A NAME="RU03302ST-10B">10b</A>
Lawley PD.
J. Chem. Soc.
1962,
1348
<A NAME="RU03302ST-11">11</A>
Charcoal, activated for chromatography
(>300 µm 40%, 300-63 µm
50%, <63 µm 10%, purchased from
Wako Pure Chemical Industries, Ltd.).
<A NAME="RU03302ST-12">12</A>
10a: 1H
NMR (CD3OD) δ = 3.48 (d, 1 H, J = 4.5 Hz,
H-α), 3.59 (dd, 1 H, J = 9.0,
13.5 Hz, H-γ), 4.09 (dd, 1 H, J = 3.5, 13.5
Hz, H-γ), 4.30 (m, 1 H, H-β), 5.10, 5.18 (d, each
1 H, AB type, J = 12.5
Hz, PhCH
2), 5.78 (d, 1 H, J = 7.0 Hz, cytosine
H-5), 7.30 (m, 5 H, Ph), 7.49 (d, 1 H, J = 7.0
Hz, cytosine H-6). 10b: 1H
NMR (CD3OD) δ = 3.50 (d, 1 H, J = 5.0 Hz,
H-α), 3.55 (dd, 1 H, J = 8.5,
14.0 Hz, H-γ), 4.05 (m, 1 H, H-β), 4.11 (dd, 1
H, J = 3.0,
14.0 Hz, H-γ), 5.16 (s, 2 H, PhCH
2),
5.75 (d, 1 H, J = 7.5
Hz, cytosine H-5), 7.32 (m, 6 H, cytosine H-6, and Ph).
<A NAME="RU03302ST-13">13</A>
Chromatrex NH (100-200mesh,
purchased from Fuji Silysia Chemical Ltd.).
<A NAME="RU03302ST-14">14</A>
Kaneko T.
Inui T.
J. Chem. Soc. Jpn.
1961,
82:
1075
<A NAME="RU03302ST-15">15</A>
11a: 1H
NMR (D2O) δ = 4.00 (d, 1 H, J = 4.5 Hz,
H-α), 4.04 (m, 2 H, H-γ), 4.75 (dt, 1 H, J = 4.5, 7.0
Hz, H-β), 5.83 (d, 1 H, J = 7.0
Hz, cytosine H-5), 7.43 (d, 1 H, J = 7.0
Hz, cytosine H-6).
11b: 1H
NMR (D2O) δ = 3.49 (dd, 1 H, J = 10.5,
14.5 Hz, H-γ), 4.19 (dd, 1 H, J = 2.5,
14.5 Hz, H-γ), 4.34 (d, 1 H, J = 9.0 Hz,
H-α), 4.96 (m, 1 H, H-β), 5.81 (d, 1 H, J = 7.0 Hz, cytosine
H-5), 7.39 (d, 1 H, J = 7.0
Hz, cytosine H-6).
<A NAME="RU03302ST-16">16</A>
Saeed A.
Young DW.
Tetrahedron
1992,
48:
2507
<A NAME="RU03302ST-17">17</A>
Compounds were subjected to the reaction
with d- and l-amino
acid oxidases [12 mM substrate in 1 mL of tris buffer (10
mM, pH 8.5), 5 units of amino acid oxidase, 30 °C, 3 d] and
it was found that both compounds were substrates of l-amino
acid oxidase but reacted just as strongly with d-amino acid
oxidase as they had done in the beginning, according to TLC monitoring
of the reaction.
<A NAME="RU03302ST-18">18</A>
Kuhn R.
Lutz P.
MacDonald DL.
Chem.
Ber.
1966,
99:
611
<A NAME="RU03302ST-19A">19a</A>
Roy R.
Laferriere CA.
Can.
J. Chem.
1990,
68:
2045
<A NAME="RU03302ST-19B">19b</A>
Miura T.
Aonuma M.
Kajimoto T.
Ida Y.
Kawase M.
Kawase Y.
Yoshida Y.
Synlett
1997,
650
<A NAME="RU03302ST-20">20</A>
Carlsen PHJ.
Katsuki T.
Martin VS.
Sharpless KB.
J.
Org. Chem.
1981,
46:
3936
<A NAME="RU03302ST-21">21</A>
20: 1H
NMR (CD3OD) δ = 1.87, 1.97, 1.98, 2.02,
2.11 (s, each 3 H, 5Ac), 2.71 (dd, 1 H, J = 5.0,
13.0 Hz, H-3eq), 3.55 (dd, 1 H, J = 8.5,
13.5 Hz, H-γ), 3.83 (s, 3 H, -CO2Me), 3.98 (dd,
1 H, J = 4.0,
13.5 Hz, H-γ′), 4.01 (t, 1 H, J = 11.0
Hz, H-5), 4.07 (dd, 1 H, J = 5.5,
12.5 Hz, H-9), 4.09, 4.36 (d, each 1 H, J = 15.0
Hz, -CH
2CO2H),
4.18 (dd, 1 H, J = 2.0, 11.0
Hz, H-6), 4.23 (dd, 1 H, J = 2.5,
12.5 Hz, H-9′), 4.54 (m, 1 H, H-β), 4.70 (d, 1
H, J = 2.5
Hz, H-α), 4.89 (m, 1 H, H-4), 5.17, 5.22 (d, each 1 H,
AB type, J = 12.0
Hz, PhCH
2-), 5.30 (dd, 1 H, J = 2.0, 9.0
Hz, H-7), 5.44 (m, 1 H, H-8), 5.80 (d, 1 H, J = 7.5
Hz, cytosine H-5), 7.33 (m, 5 H, Ph), 7.47 (d, 1 H, J = 7.5 Hz,
cytosine H-6)
<A NAME="RU03302ST-22">22</A>
21: 1H
NMR (CD3OD) δ = 1.85, 2.00, 2.09 (s,
each 3 H, 3Ac), 1.97 (s, 6 H, 2Ac), 1.90 (dd, 1 H, J = 11.0,
13.0 Hz, H-3ax), 2.53 (dd, 1 H, J = 5.0,
13.0 Hz, H-3eq), 3.62 (dd, 1 H, J = 8.5,
14.0 Hz, H-γ), 3.75 (s, 3 H, -CO2Me), 3.95 (br
t, (1 H, J = 10.5
Hz, H-5), 4.01 (dd, 1 H, J = 7.0,
12.5 Hz, H-9), 4.02 (dd, 1 H, J = 3.5,
14.0 Hz, H-γ′), 4.12, 4.20 (d, each 1 H, AB type, J = 15.0 Hz,
-CH2CO2H), 4.51 (m, 1 H, H-β), 4.70
(dd, 1 H, J = 2.0,
12.5 Hz, H-9′), 4.71 (d, 1 H, J = 2.0 Hz,
H-α), 5.15, 5.23 (d, each 1 H, AB type, J = 12.0
Hz, PhCH2), 5.24 (m, 1 H, H-8), 5.30 (dt, 1 H, J = 5.0, 11.0
Hz, H-4), 5.39 (dd, 1 H, J = 2.0,
5.0 Hz, H-7), 5.83 (d, 1 H, J = 7.5
Hz, cytosine H-5), 7.32 (m, 5 H, Ph), 7.55 (d, 1 H, J = 7.5 Hz,cytosine
H-6).
<A NAME="RU03302ST-23">23</A>
2a: 1H
NMR (D2O) δ = 1.68 (t, 1 H, J = 13.0 Hz,
H-3ax), 1.86 (s, 3 H, Ac), 2.57 (dd, 1 H, J = 4.5,
13.0 Hz, H-3eq), 3.35-4.30 (m, 13 H), 5.89 (d, 1 H, J = 7.5
Hz, cytosine H-5), 7.54 (d, 1 H, J = 7.5
Hz, cytosine 6 H).
2b: 1H
NMR (D2O) δ = 1.58 (t, 1 H, J = 13.0 Hz,
H-3ax), 1.85 (s, 3 H, Ac), 2.32 (dd, 1 H, J = 5.0,
13.0 Hz, H-3eq), 3.40-4.35 (m, 13 H), 5.91 (1 H, J = 7.5 Hz,
cytosine H-5), 7.55 (d, 1 H, J = 7.5
Hz, cytosine H-6).
<A NAME="RU03302ST-24">24</A>
Weinstein J.
de Souza-e-Silva U.
Paulson JC.
J. Biol. Chem.
1982,
257:
13835
<A NAME="RU03302ST-25">25</A>
Hamamoto T.
Tsuji S. In
Handbook
of Glycosyltransferases and Their Related Genes
Taniguchi N.
Fukuda M.
Springer-Verlag;
Tokyo:
2001.
p.295-300