References
1a
Fukase K. In Glycoscience
Vol.
II:
Fraser-Reid B.
Tatsuta K.
Thiem J.
Springer
Verlag;
Berlin-Heidelberg-New York:
2001.
p.1621
1b
Seeberger PH.
Haase W.-C.
Chem. Rev.
2000,
100:
4349
1c
Ito Y.
Manabe S.
Curr. Opin. Chem. Biol.
1998,
6:
701
1d
Osborn HMI.
Khan TH.
Tetrahedron
1999,
55:
1807
2a
Danishefsky SJ.
McClure KF.
Randolph JT.
Ruggeri RB.
Science
1993,
260:
1307
2b
Randolph JT.
McClure KF.
Danishefsky SJ.
J. Am. Chem. Soc.
1995,
117:
5712
2c
Randolph JT.
Danishefsky SJ.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
1470
2d
Zheng C.
Seeberger PH.
Danishefsky SJ.
Angew. Chem. Int. Ed.
1998,
37:
786
2e
Roberge JY.
Beebe XX.
Danishefsky SJ.
Science
1995,
269:
202
2f
Roberge JY.
Beebe XX.
Danishefsky SJ.
J. Am. Chem. Soc.
1998,
120:
3915
3a
Doi T.
Sugiki M.
Yamada H.
Takahashi T.
Porco JA.
Tetrahedron Lett.
1999,
40:
2141
3b
Takahashi T.
Inoue H.
Yamamura Y.
Doi T.
Angew. Chem. Int. Ed.
2001,
40:
3230
3c
Takahashi T.
Okano A.
Amaya T.
Tanaka H.
Doi T.
Synlett
2002,
911
4a
Yan L.
Taylor CM.
Goodnow R.
Kahne D.
J. Am.
Chem. Soc.
1994,
116:
6953
4b
Liang R.
Yan L.
Loebach J.
Ge M.
Uozumi Y.
Sekanina K.
Horan N.
Gildersleeve J.
Thompson C.
Smith A.
Biswas K.
Still WC.
Kahne D.
Science
1996,
274:
1520
5a
Rademann J.
Schmidt RR.
Tetrahedron
Lett.
1996,
37:
3989
5b
Rademann J.
Schmidt RR.
J. Org. Chem.
1997,
62:
3650
5c
Rademann J.
Geyer A.
Schmidt RR.
Angew.
Chem., Int. Ed. Engl.
1988,
37:
1241
5d
Knerr L.
Schmidt RR.
Eur. J. Org. Chem.
2000,
2803
5e
Roussel F.
Knerr L.
Grathwohl M.
Schmidt RR.
Org. Lett.
2000,
2:
3043
5f
Roussel F.
Knerr L.
Schmidt RR.
.
Eur. J. Org. Chem.
2001,
2067
5g
Roussel F.
Takhi M.
Schmidt RR.
J.
Org. Chem.
2001,
66:
8540
6a
Shimizu H.
Ito Y.
Kanie O.
Ogawa T.
Bioorg. Med. Chem.
Lett.
1996,
6:
2841
6b
Manabe S.
Nakahara Y.
Ito Y.
Synlett
2000,
1241
6c
Manabe S.
Ito Y.
Chem. Pharm. Bull.
2001,
49:
1234
7
Rodebaugh R.
Joshi S.
Fraser-Reid B.
Geysen HM.
J. Org. Chem.
1997,
62:
5660
8a
Nicolaou KC.
Winssinger N.
Pastor J.
Deroose F.
J.
Am. Chem. Soc.
1997,
119:
449
8b
Nicolaou KC.
Watanabe N.
Li J.
Pastor J.
Winssinger N.
Angew. Chem.
Int. Ed.
1998,
37:
1559
9a
Kanemitsu T.
Kanie O.
Wong C.-H.
Angew. Chem. Int. Ed.
1998,
37:
3415
9b
Kanemitsu T.
Wong C.-H.
Kanie O.
J.
Am. Chem. Soc.
2002,
124:
3591
10a
Melean LG.
Haase W.-C.
Seeberger PH.
Tetrahedron Lett.
2000,
41:
4329
10b
Plante OJ.
Palmacci ER.
Seeberger PH.
Science
2001,
291:
1523
10c
Plante OJ.
Palmacci ER.
Andrade RB.
Seeberger PH.
J.
Am. Chem. Soc.
2001,
123:
9545
10d
Palmacci ER.
Plante OJ.
Seeberger PH.
Eur. J. Org. Chem.
2002,
595
11
Belogi G.
Zhu T.
Boons G.-J.
Tetrahedron
Lett.
2000,
41:
6969
12 Commercially available from Argonaut
Technologies, San Carlos, California (http://www.argotech.com/resins/index.htm).
For investigations of other highly crosslinked macroporous resins,
see: Hori M.
Gravert DJ.
Wentworth P.
Janda KD.
Bioorganic Med. Chem. Lett.
1998,
8:
2363
13a
Egusa K.
Kusumoto S.
Fukase K.
Synlett
2001,
777
13b
Egusa K.
Fukase K.
Nakai Y.
Kusumoto S.
Synlett
2000,
27
13c
Fukase K.
Nakai Y.
Egusa K.
Porco JAJr.
Kusumoto S.
Synlett
1999,
1074
14
Fukase Y.
Fukase K.
Kusumoto S.
Tetrahedron
Lett.
1999,
40:
1169
15
Izumi M.
Fukase K.
Kusumoto S.
Biosci.
Biotechnol. Biochem.
2002,
66:
211
Sonogashira coupling on solid support:
16a
Park C.
Burgess K.
J. Comb. Chem.
2001,
3:
257
16b
Liao Y.
Fathi R.
Reitman M.
Zhang Y.
Yang Z.
Tetrahedron Lett.
2001,
42:
1815
16c
Pattarawarapan M.
Burgess K.
Angew. Chem.
Int. Ed.
2000,
39:
4299
16d
Dyatkin AB.
Rivero RA.
Tetrahedron
Lett.
1998,
39:
3647
16e
Tan DS.
Foley MA.
Shair MD.
Schreiber SL.
J.
Am. Chem. Soc.
1998,
120:
8565
17 Commercially available from Mimotopes
Pty. Ltd. (http://www.mimotopes.com). Solid-phase
oligosaccharide synthesis on SynPhase Crown see ref.
[3b]
and ref.
[7]
18
3: Mp: 98 °C; [α]D
22 = +13
(c 1.10, CHCl3); ESI-Mass (positive) m/z 509.3 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.48-7.24
(15 H, m, PhCH × 3), 5.54 (1 H, s, PhCH), 5.05 (1 H, d, J = 3.0 Hz, H-1), 4.93-4.73
(4 H, m, PhCH2 × 2), 4.51 (1 H, t, J = 9.0 Hz, H-3), 4.30 (2 H,
d, J = 3.0 Hz, OCH2-CCH),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.88-3.86 (1 H, m, H-5), 3.75-3.72
(2 H, m, H-2 and H-4), 3.62 (1 H, d, J = 5.2
Hz, H-6b), 2.47 (1 H, t, J = 3.0
Hz, OCH2-CCH). Found: C, 73.79; H, 6.11%. Calcd
for C30H30O6: C, 74.06; H, 6.21%.
19
5: Mp: 162 °C; [α]D
22 = +37
(c 1.00, CHCl3); ESI-Mass (positive) m/z 629.3 [(M + Na)+]; 1H
NMR (CDCl3) δ = 8.00 (2 H, m, CC6H4CO2Me),
7.50-7.21 (17 H, m, PhCH × 3 + CC6H4CO2Me),
5.56 (1 H, s, PhCH), 5.10 (1 H, d, J = 3.6 Hz,
H-1), 4.93-4.73 (4 H, m, PhCH2 × 2),
4.54 (2 , d, J = 3.0 Hz, OCH2-CCH),
4.26 (1 H, dd, J = 10.3, 4.9
Hz, H-6a), 4.09 (1 H, t, J = 9.1
Hz, H-3), 3.95-3.92 (1 H, m, H-5), 3.92 (3 H, s, CC6H4CO2Me),
3.71 (1 H, d, J = 10.3 Hz, H-6b),
3.65-3.61 (2 H, m, H-2 and H-4). Found: C, 72.92; H, 5.75%. Calcd
for C38H36O8·1/2H2O:
C, 72.48; H, 5.92%.
20
6: ESI-Mass
(negative) m/z 605.2 [(M - H)-]; 1H
NMR (CDCl3) δ = 8.00 (2 H, m, CC6H4CO2H),
7.50-7.21 (17 H, m, PhCH × 3 + CC6H4CO2H),
5.56 (1 H, s, PhCH), 5.10 (1 H, d, J = 3.6
Hz, H-1), 4.93-4.73 (4 H, m, PhCH2 × 2),
4.54 (2 H, d, J = 3.0 Hz, OCH2-CCH),
4.26 (1 H, dd, J = 10.3, 4.9 Hz,
H-6a), 4.09 (1 H, t, J = 9.1
Hz, H-3), 3.95-3.92 (1 H, m, H-5), 3.71 (1 H, d, J = 10.3 Hz, H-6b), 3.65-3.61
(2 H, m, H-2 and H-4). Found: C, 72.24; H, 5.78%. Calcd
for C37H34O8·1/2H2O:
C, 72.18; H, 5.73%. A typical procedure for introduction
of a monosaccharide 6 on solid support. ArgoPore
resin (NH2-LL: 0.28 mmol/g) (100mg, 28.0 µmol) was
placed in a polypropylene tube (Varian) fitted with a filter, and
washed with 5% diisopropylamine in CH2Cl2 and then
CH2Cl2. Compound 6 (38.9
mg, 56.0 µmol), HOBt (18.9 mg, 140 µmol), CH2Cl2 (3.0
mL), and DIC (8.8 µL, 56.0 µmol) were added to
the tube, successively. The reaction mixture was shaken for 3 d
with Rotator RT-50 (Taitech) and filtered. The resin was washed
with CH2Cl2 and the residual amino groups
on the resin were then capped with acetic anhydride (1.0 mL) and
triethylamine (1.0 mL) in CH2Cl2 (2.0 mL)
by shaking for 30 min. The resin was washed successively with DMF,
MeOH, and CH2Cl2.
21 A typical procedure for introduction
of 4-iodobenzoic acid 8 on solid support.
SynPhaseTM resin (NH2-HL: 35.0 µmol) was
placed in a polypropylene tube (Varian) fitted with a filter, and
washed with 5% diisopropylamine in CH2Cl2 and then
CH2Cl2. Compound 8 (17.4
mg, 70.0 µmol), HOBt (23.6 mg, 175 µmol), CH2Cl2 (3.0
mL), and DIC (11.0 µL, 70.0 µmol) were added to
the tube, successively. The reaction mixture was shaken for 3 d
with Rotator RT-50 (Taitech) and filtered. The resin was washed
with CH2Cl2 and the residual amino groups
on the resin were then capped with acetic anhydride (1.0 mL) and
triethylamine (1.0 mL) in CH2Cl2 (2.0 mL)
by shaking for 30 min. The resin was washed successively with DMF,
MeOH, and CH2Cl2.
22 A typical procedure for Sonogashira
coupling of monosaccharide 3 on solid support.
SynPhaseTM resin 9 (NH2:
35.0 µmol) was placed in a polypropylene tube (Varian)
fitted with a filter, and washed with THF. CuI (2.6 mg, 14.0 µmol),
Pd(PPh3)4 (8.1 mg, 7.0 µmol), THF
(2.5 mL), TEA (2.5 mL) and 3 (34.1 mg,
70.0 µmol) were added to the tube, successively. The reaction
mixture was shaken for 24 h with Rotator RT-50 (Taitech) and filtered.
The resin was washed with DMF, MeOH and CH2Cl2 to
give 7.
23 A typical cleavage reaction of alkynylmethyloxy
linker: The ArgoPoreTM resin 7 (100
mg of ArgoPoreTM resin) was shaken with a mixture of
Co2(CO)8 (14.4 mg, 42.0 µmol) in CH2Cl2 (3.0
mL) at room temperature for 1 h. After the reaction mixture was
filtered, the resin was washed with DMF and CH2Cl2 (3.0
mL). The resin was shaken with TFA (0.5 mL) in CH2Cl2 (4.0
mL) and water (0.5 mL) at room temperature for 12 h and then filtered.
The resin was then washed with ethyl acetate. The organic layer
was combined, washed with saturated NaHCO3 solution and
brine, dried over MgSO4, and concentrated in vacuo. The
residue was purified with preparative silica gel TLC (CHCl3-MeOH = 5:1)
to give colorless solid 10. Yield 5.1 mg
(75%). ESI-Mass (positive) m/z 383.1 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.35-7.24
(10 H, m, PhCH × 2), 5.24 (1 H, d, J = 3.63
Hz, H-1), 4.93-4.63 (4 H, m, PhCH2 × 2),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.84-3.73 (2 H, m, H-6b), 3.71-3.62
(1 H, m, H-5), 3.57-3.52 (2 H, m, H-2 and H-4), 2.19 (2
H, d, J = 8.3 Hz, OH × 2).
24
Gisin BF.
Anal.
Chim. Acta
1972,
58:
248
25 The typical procedure for glycosylation
on solid-support: The monosaccharide resin 11 (62% loading)
(100 mg of ArgoPoreTM resin) was washed with dry CH2Cl2 (3
mL). To the resin were added Molecular Sieves 4A beads, 8-12
mesh (200 mg), a solution of a glycosyl trichloroacetimidate 12 (38.9 mg, 56.0 µmol) in dry
CH2Cl2 (3.0 mL), and TMSOTf (8.8 µL,
56.0 µmol), successively. The reaction mixture was shaken
with Rotator RT-50 (Taitech) at room temperature for 3 h. The solution
was removed by filtration and the resin was washed with CH2Cl2 and
ether. After Molecular Sieves 4Å beads were removed by
picking with forceps, the resins were washed with DMF and CH2Cl2.
26
14: ESI-Mass
(positive) m/z 905.4 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.34-7.21
(30 H, m, PhCH × 6), 5.01 (1/2 H, d, J = 3.2 Hz, H-1α),
4.93-4.43 (14 H, m, PhCH2 × 6, H-1′α,
H-1′β, H-1β), 3.84-3.73 (4 H,
m, H-2, H-3, H-3′, and H-4′), 3.76-3.62
(4 H, m, H-4, H-5, H-2′, and H-5′), 3.57-3.37
(4 H, m, H-6, and H-6′), 2.50 (2 H, s, OH × 2).
27a
DeNinno MP.
Etienne JB.
Duplantier KC.
Tetrahedron
Lett.
1995,
36:
669
27b
Debenham SD.
Toone EJ.
Tetrahedron:
Asymmetry
2000,
11:
385
28
17: ESI-Mass
(positive) m/z 541.1 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.48-7.24
(15 H, m, PhCO × 2 and PhCH2), 5.94-5.88
(1 H, m, OCH2CH=CH2), 5.75 (1 H,
d, J = 9.6 Hz, H-2), 5.37-5.26
(2 H, m, OCH2CH=CH2), 5.24 (1 H,
t, J = 9.6 Hz, H-3), 5.05 (1
H, d, J = 3.6 Hz, H-1), 4.93-4.73
(4 H, m, PhCH2 and OCH2CH=CH2),
4.26 (1 H, dd, J = 10.4, 5.2 Hz,
H-6a), 3.88-3.86 (1 H, m, H-5), 3.75-3.72 (1 H,
m, H-4), 3.62 (1 H, d, J = 5.2
Hz, H-6b).
29
18: ESI-Mass
(positive) m/z 763.2 [(M + Na)+]; 1H
NMR (CDCl3) δ = 8.00-7.24 [24
H, m, PhCO × 2, PhCH2, and C13H9-CH2-OCO(Fmoc)],
5.94-5.88 (1 H, m, OCH2CH=CH2),
5.75 (1 H, d, J = 9.6 Hz, H-2),
5.56 (1 H, dd, J = 9.6, 7.9
Hz, H-4), 5.37-5.26 (2 H, m, OCH2CH=CH2),
5.24 (1 H, t, J = 9.6 Hz, H-3),
5.05 (1 H, d, J = 3.6 Hz, H-1),
4.93-4.73 (4 H, m, PhCH2 and OCH2CH=CH2),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.94 [1 H, d, J = 10.3
Hz, C13H9-CH2-OCO(Fmoc)],
3.88-3.86 (1 H, m, H-5), 3.75-3.72 (1 H, m, H-4),
3.62 (1 H, d, J = 5.2 Hz, H-6b).
30
20: Mp: 144 °C; [α]D 24 = +134
(c 1.00, CHCl3); ESI-Mass (positive) m/z 895.2 [(M + Na)+]; 1H
NMR (CDCl3) δ = 8.01 (2 H, m, OCH2C6H4CO2CH2-CCH),
7.48-7.25 (17 H, m, PhCH2 × 3, and
OCH2C6H4CO2CH2-CCH),
4.71 (1 H, d, J = 8.6 Hz, H-1),
4.88-4.45 (8 H, m, PhCH2 × 3 and OCH2C6H4CO2H),
4.51 (1 H, t, J = 9.1 Hz, H-3),
4.26 (1 H, dd, J = 10.4, 5.2
Hz, H-6a), 3.91 (2 H, d, J = 3.0
Hz, OCH2C6H4CO2CH2-CCH),
3.88-3.86 (1 H, m, H-5), 3.72 (1 H, d, J = 10.3
Hz, H-6b), 3.65-3.57 (2 H, m, H-2 and H-4), 2.47 (1 H,
t, J = 3.0 Hz, OCH2C6H4CO2CH2-CCH).
31 A typical procedure for solid-phase
glycosylation using a glycosyl trichloroacetimidate: The 4-O-Fmoc resin 21 (21% loading)
(SynPhaseTM-NH2; 7.7 µmol) was washed
with CH2Cl2 (3.0 mL). To the resin was added
25% piperidine in CH2Cl2 (3.0 mL).
The reaction mixture was shaken with Rotator RT-50 (Taitech) at
room temperature for 30 min. The solution was removed by filtration
and the resin was washed with CH2Cl2, DMF
and MeOH. The resin was then washed with 5% TMSOTf in dry
CH2Cl2 and then dry CH2Cl2 (3
mL). Trichloroacetimidate 19 (19.5 mg,
23.1 µmol), dry CH2Cl2 (3.0 mL),
and TMSOTf (0.3 µL, 1.5 µmol) were added. The
reaction mixture was shaken with Rotator RT-50 (Taitech) at room
temperature for 30 min to give resin-linked disaccharide 32.
Typical procedure of cleavage
from solid support by alkali. SynPhase resin linked with disaccharide
via alkynyl ester linker was shaken with a mixture of 28% CH3ONa
in MeOH (1.0 mL), MeOH (1.0 mL) and CH2Cl2 (2.0
mL) at room temperature for 12 h. After the reaction mixture was
filtered, EtOAc and 0.1 N aqueous HCl were added to the filtrate. The
organic layer was combined, washed with saturated NaHCO3 solution
and brine, dried over MgSO4, and concentrated in vacuo.
The residue was purified with preparative silica gel TLC (CHCl3-MeOH = 5:1)
to give the desired compound.
34:
Yield 7.2 mg (quant.). ESI-Mass (positive) m/z 945.5 [(M + Na)+]; 1H
NMR (CDCl3) δ = 7.84-7.21
(19 H, m, PhCH2 × 3 and OCH2C6H4CO2Me),
4.83-4.43 (10 H, m, PhCH2 × 3, OCH2C6H4CO2Me,
H-1β, H-1′β, and H-1′′β), 3.93
(3 H, s, OCH2C6H4CO2Me),
3.84-3.60 (12H, m, H-2, H-3, H-4, H-5, H-2′, H-3′,
H-4′, H-5′, H-2′′, H-3′′,
H-4′′ and H-5′), 3.57-3.37 (4
H, m, H-6, H-6′, and H-6′′), 2.50 (4
H, s, OH × 7).
32
Fukase Y.
Zhang S.-Q.
Iseki K.
Oikawa M.
Fukase K.
Kusumoto S.
Synlett
2001,
1693