Subscribe to RSS
DOI: 10.1055/s-2002-33707
From Amino Acids To
Dihydrofurans: Functionalized Allenes in Modern
Organic
Synthesis
Publication History
Publication Date:
05 September 2002 (online)
Abstract
In this account, recent accomplishments in the field of target-oriented synthesis involving allenes are summarized. Allenic α-amino acid derivatives 9, which are of interest as possible vitamin B6 decarboxylase inhibitors, were prepared by 1,6-addition of the cyano-Gilman reagent t-Bu2CuLi·LiCN to 2-amino-substituted enynoates 8, and selective deprotection at either the amino or the ester group was realized. 2,5-Dihydrofurans 18 were obtained by cyclization of the corresponding α-hydroxyallenes; for this step, new methods (treatment with hydrogen chloride gas or acidic ion exchange resin; gold(III)-chloride catalysis) were developed. The 2-hydroxy-3,4-dienoates 14 were obtained by diastereoselective oxidation of titanium enolates formed from 3,4-dienoates 12 with dimethyl dioxirane (DMDO), whereas hydroxyallenes 16 were prepared by copper-mediated SN2′-substitution of propargylic epoxides 15.
-
1 Introduction
-
2 Synthesis of α-Allenic α-Amino Acids
-
3 Synthesis of 2,5-Dihydrofurans
-
4 Conclusion
-
5 Experimental Section
Key words
allenes - amino acids - gold catalysis - 2,5-dihydrofurans - organocopper reagents
-
1a
The
Chemistry of Ketenes Allenes and Related Compounds
Patai S. Wiley; New York: 1980. -
1b
The Chemistry
of Allenes
Landor SR. Academic Press; London: 1982. -
1c
Schuster HF.Coppola GM. Allenes in Organic Synthesis Wiley; New York: 1984. -
2a
Review: Zimmer R. Synthesis 1993, 165 -
2b
Black TG. Tetrahedron 2001, 57: 5263 -
3a
Krause N. Liebigs Ann. Chem. 1993, 521 -
3b
Koop U.Handke G.Krause N. Liebigs Ann. Chem. 1996, 1487 ; and literature cited therein - 4 Review:
Zimmer R.Dinesh CU.Nandanan E.Khan FA. Chem. Rev. 2000, 100: 3067 -
5a Enprostil:
Gooding OW.Beard CC.Cooper GF.Jackson DY. J. Org. Chem. 1993, 58: 3681 -
5b
Cooper GF.Wren DL.Jackson DY.Beard CC.Galeazzi E.VanHorn AR.Li TT. J. Org. Chem. 1993, 58: 4280 -
5c
Ono N.Kawanaka Y.Yoshida Y.Sato F. J. Chem. Soc., Chem. Commun. 1994, 1251 -
5d
Lee YS.Nam KH.Jung SH.Park H. Synthesis 1994, 792 -
5e Allenic nucleoside analogues:
Zemlicka J. In Nucleosides and Nucleotides as Antitumor and Antiviral Nucleoside AnaloguesChu CK.Baker DC. Plenum; New York: 1993. p.73-100 -
5f
Jones BCNM.Silverton JV.Simons C.Megati S.Nishimura H.Maeda Y.Mitsuya H.Zemlicka J. J. Med. Chem. 1995, 38: 1397 -
5g
Zemlicka J. Nucleosides Nucleotides 1997, 16: 1003 -
5h Allenic isocarbacyclin
analogues:
Mikami K.Yoshida A.Matsumoto Y. Tetrahedron Lett. 1996, 37: 8515 - Some selected examples:
-
6a
Yamono Y.Ito M. J. Chem. Soc., Perkin. Trans. 1 1993, 1599 -
6b
Evans PA.Murthy VS.Roseman JD.Rheingold AL. Angew. Chem. Int. Ed. 1999, 38: 3175 ; Angew. Chem. 1999, 111, 3370 -
6c
VanBrunt MP.Standaert RF. Org. Lett. 2000, 2: 705 -
6d
Crimmins MT.Emmitte KA. J. Am. Chem. Soc. 2001, 123: 1533 -
7a
Krause N.Gerold A. Angew. Chem., Int. Ed. Engl. 1997, 36: 186 ; Angew. Chem. 1997, 109, 194 -
7b
Krause N.Thorand S. Inorg. Chim. Acta 1999, 296: 1 -
7c
Krause N.Zelder C. In The Chemistry of Dienes and Polyenes Vol. 2:Rappoport Z. Wiley; New York: 2000. p.645-691 -
7d
Krause N.Hoffmann-Röder A. In Modern Organocopper ChemistryKrause N. Wiley-VCH; Weinheim: 2002. p.145-166 -
8a
Rando RR. Science 1974, 185: 320 -
8b
Walsh C. Tetrahedron 1982, 38: 871 - 9
Castelhano AL.Pliura DH.Taylor GJ.Hsieh KC.Krantz A. J. Am. Chem. Soc. 1984, 106: 2734 - 10
Chilton WS.Tsou G.Kirk L.Benedict RG. Tetrahedron Lett. 1968, 6283 -
11a
Dunn MJ.Jackson RFW.Pietruszka J.Wishart N.Ellis D.Wythes MJ. Synlett 1993, 499 -
11b
Hunter C.Jackson RFW.Rami HK. J. Chem. Soc., Perkin Trans. 1 2001, 1349 - 12
Cazes B.Djahanbini D.Goré J.Genêt J.-P.Gaudin J.-M. Synthesis 1988, 983 - 13
Castelhano AL.Horne S.Taylor GJ.Billedeau R.Krantz A. Tetrahedron 1988, 44: 5451 -
14a
Kazmaier U.Görbitz CH. Synthesis 1996, 1489 -
14b
Kazmaier U. Liebigs Ann. Recl. 1997, 285 -
15a
Evans DA.Britton TC. J. Am. Chem. Soc. 1987, 109: 6881 -
15b
Evans DA.Britton TC.Ellman JA.Dorow RL. J. Am. Chem. Soc. 1990, 112: 4011 -
16a
Mitsunobu O. Synthesis 1981, 1 -
16b
Hughes DL. Org. React. 1992, 42: 335 -
16c
Thompson AS.Humphrey GR.DeMarco AM.Mathre DJ.Grabowski EJJ. J. Org. Chem. 1993, 58: 5886 - 17
Canisius J. Ph.D. Thesis Dortmund University; Germany: 2000. -
18a
Wadsworth WS. Org. React. 1978, 25: 73 -
18b
Stec WJ. Acc. Chem. Res. 1983, 16: 411 -
18c
Maryanoff BE.Reitz A. Chem. Rev. 1989, 89: 863 - 19 Attempts to prepare 2-en-4-ynoates
with unprotected amino functions in 2-position by using the corresponding aminophosphonate
failed:
Seki M.Matsumoto K. Synthesis 1996, 580 . Ref. 11 -
20a
Brandsma L. Preparative Acetylenic Chemistry Elsevier; Amsterdam: 1988. p.102-103 -
20b
Journet M.Cai D.Dimichele L.Larsen RD. Tetrahedron Lett. 1998, 39: 6427 -
21a
Boronoeva TR.Belyaev NN.Stadnichuk MD.Petrov AA. J. Gen. Chem. USSR 1974, 44: 1914 -
21b
Belyaev NN.Komissarova EV.Stadnichuk MD. J. Gen. Chem. USSR 1982, 52: 1854 - 22
Miossec B.Danion-Bougot R.Danion D. Synthesis 1994, 1171 - 23
Canisius J.Schürmann M.Preut H.Krause N. Acta Cryst. 1999, C55: IUC99001118 - 24
Canisius J.Schürmann M.Preut H.Krause N. Z. Kristallogr. New Cryst. Struct. 2001, 216: 599 -
26a
Gelin R.Gelin S.Albrand M. Bull. Soc. Chim. Fr. 1972, 1946 -
26b
Olsson L.-I.Claesson A. Synthesis 1979, 743 -
26c
Beaulieu PL.Morisset VM.Garratt DG. Tetrahedron Lett. 1980, 21: 129 -
26d
Marshall JA.Wang X. J. Org. Chem. 1990, 55: 2995 -
26e
Marshall JA.Wang X.-j. J. Org. Chem. 1991, 56: 4913 -
26f
Marshall JA.Pinney KG. J. Org. Chem. 1993, 58: 7180 -
26g
Marshall JA.Bartley GS. J. Org. Chem. 1994, 59: 7169 -
26h
Corey EJ.Jones GB. Tetrahedron Lett. 1991, 32: 5713 -
26i
Aurrecoechea JM.Solay M. Tetrahedron Lett. 1995, 36: 2501 -
26j
Ma S.Gao W. Tetrahedron Lett. 2000, 41: 8933 -
27a
Franck B.Gehrken H.-P. Angew. Chem., Int. Ed. Engl. 1980, 19: 461 ; Angew. Chem. 1980, 92, 484 -
27b
Ganguli M.Burka LT.Harris TM. J. Org. Chem. 1984, 49: 3762 -
28a
Boivin TLB. Tetrahedron 1987, 43: 3309 -
28b
Koert U.Stein M.Wagner H. Chem.-Eur. J 1997, 3: 1170 - 29
Perron F.Albizati KF. Chem. Rev. 1989, 89: 1617 - 30
VanBrunt MP.Standaert RF. Org. Lett. 2000, 2: 705 -
31a With
Grignard reagents:
Alexakis A.Marek I.Mangeney P.Normant JF. Tetrahedron 1991, 47: 1677 -
31b
With organocuprates: see ref. [26f]
- 32
Krause N.Laux M.Hoffmann-Röder A. Tetrahedron Lett. 2000, 41: 9613 -
34a
Adam W.Hadjarapoglou L. Top. Curr. Chem. 1993, 164: 45 -
34b
Adam W.Müller M.Prechtl F. J. Org. Chem. 1994, 59: 2358 -
36a
Hoffmann-Röder A.Krause N. Org. Lett. 2001, 3: 2537 -
36b For the corresponding
gold-catalyzed cyclization allenyl ketones to furans see:
Hashmi ASK.Schwarz L.Choi J.-K.Frost TM. Angew. Chem. Int. Ed. 2000, 39: 2285 ; Angew. Chem. 2000, 112, 2382 - 37
Shizuri Y.Nishiyama S.Imai D.Yamamura S. Tetrahedron Lett. 1984, 25: 4771 - 38
Mitchell P. FEBS Lett. 1977, 78: 1 - Syntheses of racemic citreoviral:
-
39a
Ebenezer W.Pattenden G. Tetrahedron Lett. 1992, 33: 4053; and references cited therein -
39b
Shizuri Y.Nishiyama S.Shigemori H.Yamamura S. J. Chem. Soc., Chem. Commun. 1985, 292 - Syntheses of (+)-citreoviral by stereoselective oxidations:
-
40a
Hatakeyama S.Matsui Y.Suzuki M.Sakurai K.Takano S. Tetrahedron Lett. 1985, 26: 6485 -
40b
Trost BM.Lynch JK.Angle SR. Tetrahedron Lett. 1987, 28: 375 -
40c
Hatakeyama S.Sakurai K.Numata H.Ochi N.Takano S. J. Am. Chem. Soc. 1988, 110: 5201 -
41a
Nishiyama S.Shizuri Y.Yamamura S. Tetrahedron Lett. 1985, 26: 231 -
41b
Suh H.Wilcox CS. J. Am. Chem. Soc. 1988, 110: 470 -
41c
Whang K.Venkataraman H.Kim YG.Cha JK. J. Org. Chem. 1991, 56: 7174 - 42
Mulzer J.Bilow J.Wille G. J. Prakt. Chem. 2000, 342: 773 -
43a
Williams DR.White FH. Tetrahedron Lett. 1985, 26: 2529 -
43b
Williams DR.White FH. J. Org. Chem. 1987, 52: 5067 -
43c
Hanaki N.Link JT.MacMillan DWC.Overman LE.Trankle WG.Wurster JA. Org. Lett. 2000, 2: 223 - 44
Hoffmann HMR.Krumwiede D.Mucha B.Oehlerking HH.Prahst GW. Tetrahedron 1993, 49: 8999 - 45
Kofron WG.Baclawski LM. J. Org. Chem. 1976, 41: 1879 - 46
Seki M.Matsumoto K. Synthesis 1996, 580 - 47
Kober R.Steglich W. Liebigs Ann. Chem. 1983, 599 - 48
Haubrich A.Van Klaveren M.Van Koten G.Handke G.Krause N. J. Org. Chem. 1993, 58: 5849 - 49
Arndt S.Handke G.Krause N. Chem. Ber. 1993, 126: 251 -
50a
Marshall JA.DuBay WJ. J. Org. Chem. 1993, 58: 3435 -
50b
Piotti ME.Alper H. J. Org. Chem. 1997, 62: 8484 - 51
Marshall JA.Tang Y. J. Org. Chem. 1994, 59: 1457
References
The protonation of allenyl enolates bearing alkyl substituents at C-2 also occurs without diastereoselectivity: Krause, N. Unpublished results.
33Without transmetalation of the lithium enolate to the less basic titanium enolate the only product obtained by treatment with the acetone soln of DMDO is the aldol adduct of the ester enolate with acetone.
35Hoffmann-Röder, A.; Krause, N. Manuscript in preparation.