Abstract
In this account, recent accomplishments in the field of target-oriented
synthesis involving allenes are summarized. Allenic α-amino
acid derivatives 9, which are of interest
as possible vitamin B6 decarboxylase inhibitors, were
prepared by 1,6-addition of the cyano-Gilman reagent t-Bu2CuLi·LiCN to
2-amino-substituted enynoates 8, and selective
deprotection at either the amino or the ester group was realized.
2,5-Dihydrofurans 18 were obtained by cyclization
of the corresponding α-hydroxyallenes; for this step, new methods
(treatment with hydrogen chloride gas or acidic ion exchange resin;
gold(III)-chloride catalysis) were developed. The 2-hydroxy-3,4-dienoates 14 were obtained by diastereoselective
oxidation of titanium enolates formed from 3,4-dienoates 12 with dimethyl dioxirane (DMDO),
whereas hydroxyallenes 16 were prepared
by copper-mediated SN2′-substitution of propargylic
epoxides 15.
Key words
allenes - amino acids - gold catalysis - 2,5-dihydrofurans - organocopper reagents
References
<A NAME="RZ03102SS-1A">1a</A>
The
Chemistry of Ketenes Allenes and Related Compounds
Patai S.
Wiley;
New York:
1980.
<A NAME="RZ03102SS-1B">1b</A>
The Chemistry
of Allenes
Landor SR.
Academic Press;
London:
1982.
<A NAME="RZ03102SS-1C">1c</A>
Schuster HF.
Coppola GM.
Allenes
in Organic Synthesis
Wiley;
New York:
1984.
<A NAME="RZ03102SS-2A">2a</A>
Review: Zimmer R.
Synthesis
1993,
165
<A NAME="RZ03102SS-2B">2b</A>
Black TG.
Tetrahedron
2001,
57:
5263
<A NAME="RZ03102SS-3A">3a</A>
Krause N.
Liebigs Ann. Chem.
1993,
521
<A NAME="RZ03102SS-3B">3b</A>
Koop U.
Handke G.
Krause N.
Liebigs
Ann. Chem.
1996,
1487 ;
and literature cited therein
<A NAME="RZ03102SS-4">4</A> Review:
Zimmer R.
Dinesh CU.
Nandanan E.
Khan FA.
Chem. Rev.
2000,
100:
3067
<A NAME="RZ03102SS-5A">5a</A> Enprostil:
Gooding OW.
Beard CC.
Cooper GF.
Jackson DY.
J. Org. Chem.
1993,
58:
3681
<A NAME="RZ03102SS-5B">5b</A>
Cooper GF.
Wren DL.
Jackson DY.
Beard CC.
Galeazzi E.
VanHorn AR.
Li TT.
J. Org. Chem.
1993,
58:
4280
<A NAME="RZ03102SS-5C">5c</A>
Ono N.
Kawanaka Y.
Yoshida Y.
Sato F.
J. Chem. Soc., Chem. Commun.
1994,
1251
<A NAME="RZ03102SS-5D">5d</A>
Lee YS.
Nam KH.
Jung SH.
Park H.
Synthesis
1994,
792
<A NAME="RZ03102SS-5E">5e</A> Allenic nucleoside analogues:
Zemlicka J. In Nucleosides and Nucleotides
as Antitumor and Antiviral Nucleoside Analogues
Chu CK.
Baker DC.
Plenum;
New York:
1993.
p.73-100
<A NAME="RZ03102SS-5F">5f</A>
Jones BCNM.
Silverton JV.
Simons C.
Megati S.
Nishimura H.
Maeda Y.
Mitsuya H.
Zemlicka J.
J.
Med. Chem.
1995,
38:
1397
<A NAME="RZ03102SS-5G">5g</A>
Zemlicka J.
Nucleosides
Nucleotides
1997,
16:
1003
<A NAME="RZ03102SS-5H">5h</A> Allenic isocarbacyclin
analogues:
Mikami K.
Yoshida A.
Matsumoto Y.
Tetrahedron Lett.
1996,
37:
8515
Some selected examples:
<A NAME="RZ03102SS-6A">6a</A>
Yamono Y.
Ito M.
J. Chem. Soc., Perkin. Trans. 1
1993,
1599
<A NAME="RZ03102SS-6B">6b</A>
Evans PA.
Murthy VS.
Roseman JD.
Rheingold AL.
Angew.
Chem. Int. Ed.
1999,
38:
3175 ; Angew. Chem. 1999, 111, 3370
<A NAME="RZ03102SS-6C">6c</A>
VanBrunt MP.
Standaert RF.
Org.
Lett.
2000,
2:
705
<A NAME="RZ03102SS-6D">6d</A>
Crimmins MT.
Emmitte KA.
J.
Am. Chem. Soc.
2001,
123:
1533
<A NAME="RZ03102SS-7A">7a</A>
Krause N.
Gerold A.
Angew.
Chem., Int. Ed. Engl.
1997,
36:
186 ; Angew. Chem. 1997, 109, 194
<A NAME="RZ03102SS-7B">7b</A>
Krause N.
Thorand S.
Inorg. Chim. Acta
1999,
296:
1
<A NAME="RZ03102SS-7C">7c</A>
Krause N.
Zelder C. In The Chemistry of Dienes
and Polyenes
Vol. 2:
Rappoport Z.
Wiley;
New
York:
2000.
p.645-691
<A NAME="RZ03102SS-7D">7d</A>
Krause N.
Hoffmann-Röder A. In Modern Organocopper
Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
p.145-166
<A NAME="RZ03102SS-8A">8a</A>
Rando RR.
Science
1974,
185:
320
<A NAME="RZ03102SS-8B">8b</A>
Walsh C.
Tetrahedron
1982,
38:
871
<A NAME="RZ03102SS-9">9</A>
Castelhano AL.
Pliura DH.
Taylor GJ.
Hsieh KC.
Krantz A.
J. Am. Chem. Soc.
1984,
106:
2734
<A NAME="RZ03102SS-10">10</A>
Chilton WS.
Tsou G.
Kirk L.
Benedict RG.
Tetrahedron Lett.
1968,
6283
<A NAME="RZ03102SS-11A">11a</A>
Dunn MJ.
Jackson RFW.
Pietruszka J.
Wishart N.
Ellis D.
Wythes MJ.
Synlett
1993,
499
<A NAME="RZ03102SS-11B">11b</A>
Hunter C.
Jackson RFW.
Rami HK.
J. Chem. Soc., Perkin Trans. 1
2001,
1349
<A NAME="RZ03102SS-12">12</A>
Cazes B.
Djahanbini D.
Goré J.
Genêt J.-P.
Gaudin J.-M.
Synthesis
1988,
983
<A NAME="RZ03102SS-13">13</A>
Castelhano AL.
Horne S.
Taylor GJ.
Billedeau R.
Krantz A.
Tetrahedron
1988,
44:
5451
<A NAME="RZ03102SS-14A">14a</A>
Kazmaier U.
Görbitz CH.
Synthesis
1996,
1489
<A NAME="RZ03102SS-14B">14b</A>
Kazmaier U.
Liebigs
Ann. Recl.
1997,
285
<A NAME="RZ03102SS-15A">15a</A>
Evans DA.
Britton TC.
J. Am. Chem. Soc.
1987,
109:
6881
<A NAME="RZ03102SS-15B">15b</A>
Evans DA.
Britton TC.
Ellman JA.
Dorow RL.
J.
Am. Chem. Soc.
1990,
112:
4011
<A NAME="RZ03102SS-16A">16a</A>
Mitsunobu O.
Synthesis
1981,
1
<A NAME="RZ03102SS-16B">16b</A>
Hughes DL.
Org. React.
1992,
42:
335
<A NAME="RZ03102SS-16C">16c</A>
Thompson AS.
Humphrey GR.
DeMarco AM.
Mathre DJ.
Grabowski EJJ.
J. Org.
Chem.
1993,
58:
5886
<A NAME="RZ03102SS-17">17</A>
Canisius J.
Ph.D.
Thesis
Dortmund University;
Germany:
2000.
<A NAME="RZ03102SS-18A">18a</A>
Wadsworth WS.
Org. React.
1978,
25:
73
<A NAME="RZ03102SS-18B">18b</A>
Stec WJ.
Acc. Chem. Res.
1983,
16:
411
<A NAME="RZ03102SS-18C">18c</A>
Maryanoff BE.
Reitz A.
Chem. Rev.
1989,
89:
863
<A NAME="RZ03102SS-19">19</A> Attempts to prepare 2-en-4-ynoates
with unprotected amino functions in 2-position by using the corresponding aminophosphonate
failed:
Seki M.
Matsumoto K.
Synthesis
1996,
580 . Ref. 11
<A NAME="RZ03102SS-20A">20a</A>
Brandsma L.
Preparative Acetylenic Chemistry
Elsevier;
Amsterdam:
1988.
p.102-103
<A NAME="RZ03102SS-20B">20b</A>
Journet M.
Cai D.
Dimichele L.
Larsen RD.
Tetrahedron Lett.
1998,
39:
6427
<A NAME="RZ03102SS-21A">21a</A>
Boronoeva TR.
Belyaev NN.
Stadnichuk MD.
Petrov AA.
J. Gen. Chem. USSR
1974,
44:
1914
<A NAME="RZ03102SS-21B">21b</A>
Belyaev NN.
Komissarova EV.
Stadnichuk MD.
J. Gen. Chem.
USSR
1982,
52:
1854
<A NAME="RZ03102SS-22">22</A>
Miossec B.
Danion-Bougot R.
Danion D.
Synthesis
1994,
1171
<A NAME="RZ03102SS-23">23</A>
Canisius J.
Schürmann M.
Preut H.
Krause N.
Acta Cryst.
1999,
C55:
IUC99001118
<A NAME="RZ03102SS-24">24</A>
Canisius J.
Schürmann M.
Preut H.
Krause N.
Z. Kristallogr. New Cryst. Struct.
2001,
216:
599
<A NAME="RZ03102SS-25">25</A>
The protonation of allenyl enolates
bearing alkyl substituents at C-2 also occurs without diastereoselectivity: Krause,
N. Unpublished results.
<A NAME="RZ03102SS-26A">26a</A>
Gelin R.
Gelin S.
Albrand M.
Bull. Soc. Chim. Fr.
1972,
1946
<A NAME="RZ03102SS-26B">26b</A>
Olsson L.-I.
Claesson A.
Synthesis
1979,
743
<A NAME="RZ03102SS-26C">26c</A>
Beaulieu PL.
Morisset VM.
Garratt DG.
Tetrahedron Lett.
1980,
21:
129
<A NAME="RZ03102SS-26D">26d</A>
Marshall JA.
Wang X.
J. Org. Chem.
1990,
55:
2995
<A NAME="RZ03102SS-26E">26e</A>
Marshall JA.
Wang X.-j.
J. Org.
Chem.
1991,
56:
4913
<A NAME="RZ03102SS-26F">26f</A>
Marshall JA.
Pinney KG.
J.
Org. Chem.
1993,
58:
7180
<A NAME="RZ03102SS-26G">26g</A>
Marshall JA.
Bartley GS.
J.
Org. Chem.
1994,
59:
7169
<A NAME="RZ03102SS-26H">26h</A>
Corey EJ.
Jones GB.
Tetrahedron
Lett.
1991,
32:
5713
<A NAME="RZ03102SS-26I">26i</A>
Aurrecoechea JM.
Solay M.
Tetrahedron
Lett.
1995,
36:
2501
<A NAME="RZ03102SS-26J">26j</A>
Ma S.
Gao W.
Tetrahedron Lett.
2000,
41:
8933
<A NAME="RZ03102SS-27A">27a</A>
Franck B.
Gehrken H.-P.
Angew.
Chem., Int. Ed. Engl.
1980,
19:
461 ; Angew. Chem. 1980, 92, 484
<A NAME="RZ03102SS-27B">27b</A>
Ganguli M.
Burka LT.
Harris TM.
J. Org. Chem.
1984,
49:
3762
<A NAME="RZ03102SS-28A">28a</A>
Boivin TLB.
Tetrahedron
1987,
43:
3309
<A NAME="RZ03102SS-28B">28b</A>
Koert U.
Stein M.
Wagner H.
Chem.-Eur.
J
1997,
3:
1170
<A NAME="RZ03102SS-29">29</A>
Perron F.
Albizati KF.
Chem. Rev.
1989,
89:
1617
<A NAME="RZ03102SS-30">30</A>
VanBrunt MP.
Standaert RF.
Org. Lett.
2000,
2:
705
<A NAME="RZ03102SS-31A">31a</A> With
Grignard reagents:
Alexakis A.
Marek I.
Mangeney P.
Normant JF.
Tetrahedron
1991,
47:
1677
<A NAME="RZ03102SS-31B">31b</A>
With organocuprates:
see ref.
[26f]
<A NAME="RZ03102SS-32">32</A>
Krause N.
Laux M.
Hoffmann-Röder A.
Tetrahedron Lett.
2000,
41:
9613
<A NAME="RZ03102SS-33">33</A>
Without transmetalation of the lithium
enolate to the less basic titanium enolate the only product obtained
by treatment with the acetone soln of DMDO is the aldol adduct of
the ester enolate with acetone.
<A NAME="RZ03102SS-34A">34a</A>
Adam W.
Hadjarapoglou L.
Top.
Curr. Chem.
1993,
164:
45
<A NAME="RZ03102SS-34B">34b</A>
Adam W.
Müller M.
Prechtl F.
J.
Org. Chem.
1994,
59:
2358
<A NAME="RZ03102SS-35">35</A>
Hoffmann-Röder, A.; Krause,
N. Manuscript in preparation.
<A NAME="RZ03102SS-36A">36a</A>
Hoffmann-Röder A.
Krause N.
Org.
Lett.
2001,
3:
2537
<A NAME="RZ03102SS-36B">36b</A> For the corresponding
gold-catalyzed cyclization allenyl ketones to furans see:
Hashmi ASK.
Schwarz L.
Choi J.-K.
Frost TM.
Angew.
Chem. Int. Ed.
2000,
39:
2285 ; Angew. Chem. 2000, 112, 2382
<A NAME="RZ03102SS-37">37</A>
Shizuri Y.
Nishiyama S.
Imai D.
Yamamura S.
Tetrahedron Lett.
1984,
25:
4771
<A NAME="RZ03102SS-38">38</A>
Mitchell P.
FEBS
Lett.
1977,
78:
1
Syntheses of racemic citreoviral:
<A NAME="RZ03102SS-39A">39a</A>
Ebenezer W.
Pattenden G.
Tetrahedron Lett.
1992,
33:
4053; and references cited therein
<A NAME="RZ03102SS-39B">39b</A>
Shizuri Y.
Nishiyama S.
Shigemori H.
Yamamura S.
J. Chem. Soc., Chem. Commun.
1985,
292
Syntheses of (+)-citreoviral
by stereoselective oxidations:
<A NAME="RZ03102SS-40A">40a</A>
Hatakeyama S.
Matsui Y.
Suzuki M.
Sakurai K.
Takano S.
Tetrahedron
Lett.
1985,
26:
6485
<A NAME="RZ03102SS-40B">40b</A>
Trost BM.
Lynch JK.
Angle SR.
Tetrahedron Lett.
1987,
28:
375
<A NAME="RZ03102SS-40C">40c</A>
Hatakeyama S.
Sakurai K.
Numata H.
Ochi N.
Takano S.
J.
Am. Chem. Soc.
1988,
110:
5201
<A NAME="RZ03102SS-41A">41a</A>
Nishiyama S.
Shizuri Y.
Yamamura S.
Tetrahedron Lett.
1985,
26:
231
<A NAME="RZ03102SS-41B">41b</A>
Suh H.
Wilcox CS.
J. Am. Chem. Soc.
1988,
110:
470
<A NAME="RZ03102SS-41C">41c</A>
Whang K.
Venkataraman H.
Kim YG.
Cha JK.
J. Org. Chem.
1991,
56:
7174
<A NAME="RZ03102SS-42">42</A>
Mulzer J.
Bilow J.
Wille G.
J.
Prakt. Chem.
2000,
342:
773
<A NAME="RZ03102SS-43A">43a</A>
Williams DR.
White FH.
Tetrahedron Lett.
1985,
26:
2529
<A NAME="RZ03102SS-43B">43b</A>
Williams DR.
White FH.
J.
Org. Chem.
1987,
52:
5067
<A NAME="RZ03102SS-43C">43c</A>
Hanaki N.
Link JT.
MacMillan DWC.
Overman LE.
Trankle WG.
Wurster JA.
Org. Lett.
2000,
2:
223
<A NAME="RZ03102SS-44">44</A>
Hoffmann HMR.
Krumwiede D.
Mucha B.
Oehlerking HH.
Prahst GW.
Tetrahedron
1993,
49:
8999
<A NAME="RZ03102SS-45">45</A>
Kofron WG.
Baclawski LM.
J. Org. Chem.
1976,
41:
1879
<A NAME="RZ03102SS-46">46</A>
Seki M.
Matsumoto K.
Synthesis
1996,
580
<A NAME="RZ03102SS-47">47</A>
Kober R.
Steglich W.
Liebigs Ann. Chem.
1983,
599
<A NAME="RZ03102SS-48">48</A>
Haubrich A.
Van Klaveren M.
Van Koten G.
Handke G.
Krause N.
J.
Org. Chem.
1993,
58:
5849
<A NAME="RZ03102SS-49">49</A>
Arndt S.
Handke G.
Krause N.
Chem.
Ber.
1993,
126:
251
<A NAME="RZ03102SS-50A">50a</A>
Marshall JA.
DuBay WJ.
J. Org. Chem.
1993,
58:
3435
<A NAME="RZ03102SS-50B">50b</A>
Piotti ME.
Alper H.
J. Org. Chem.
1997,
62:
8484
<A NAME="RZ03102SS-51">51</A>
Marshall JA.
Tang Y.
J. Org. Chem.
1994,
59:
1457