Pharmacopsychiatry 2002; 35(5): 175-181
DOI: 10.1055/s-2002-34116
Original Paper
© Georg Thieme Verlag Stuttgart · New York

Plasma Levels of Catecholamine Metabolites Predict the Response to Sulpiride or Fluvoxamine in Major Depression

N. Ueda1 , R. Yoshimura1 , K. Shinkai1 , J. Nakamura1
  • 1Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
The present study was partly supported by a Research Grant for Nervous and Mental Disorders from the Ministry and Welfare, Japan
Further Information

Publication History

Received: 27. 4. 2001 Revised: 22. 11. 2001

Accepted: 14. 1. 2002

Publication Date:
18 September 2002 (online)

We investigated the relationships between the changes in plasma catecholamine metabolites obtained from depressed patients before and after administration of sulpiride, a benzamide compound, or fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), and between clinical responses to treatment with each of these drugs. Responders to sulpiride had significantly lower plasma homovanillic acid (pHVA) levels before administration of sulpiride than did non-responders or controls (responders: 4.5 ± 3.1 ng/ml, non-responders: 11.1 ± 5.9 ng/ml, controls: 10.9 ± 5.3 ng/ml). Positive relationships were observed between changes in pHVA levels and improvement rates in the 17-item Hamilton Depression Rating Scale (Ham-D). In contrast, responders to fluvoxamine had significantly higher plasma free 3-methoxy-4-hydroxyphenylglycol (pMHPG) levels before administration of fluvoxamine than did non-responders or controls (responders: 8.5 ± 1.8 ng/ml, non-responders: 5.9 ± 2.I ng/ml, controls: 5.2 ± 2.9 ng/ml). Negative relationships were observed between changes in pMHPG levels and improvement rates in Ham-D. These results suggest that lower pretreatment pHVA levels and higher pretreatment levels of pMHPG might be predictors of response to sulpiride and fluvoxamine, respectively, and that sulpiride might produce a functional increase in the dopaminergic system, resulting in improvement in some depressive symptoms; fluvoxamine, on the other hand, might produce a functional decrease in the noradrenergic system via serotonergic neurons, resulting in improvement of those symptoms.

References

  • 1 Aberg-Wistedt A, Ross S B, Jaostell K G, Sjoquist B. A double-blind study of zimelidine, a serotonin uptake inhibitor, and desipramine, a noradrenaline uptake inhbitor, in endogenous depression.  Acta Psychiatr Scand. 1982;  66 66-82
  • 2 Asnis G M, Hameedi F A, Goggard A W, Potkin S G, Black D, Jameel M, Desagani K, Woods S W. Fluvoxamine in the treatment of panic disorder: a multi-center, double-blind, placebo-controlled study in outpatients.  Psychiatry Res. 2001;  103 1-14
  • 3 Banki C M. Correlation between cerebrospinal fluid amine metabolites and psychomotor activity in affective disorders.  J Neurochem. 1977;  28 255-257
  • 4 Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness.  Drugs. 1986;  32 313-334
  • 5 Bocchetta A, Bernardi F, Burrai C, Pedditzi M, Del Zompo M. A double-blind study of L-sulpiride versus amitriptyline in lithium maintained bipolar depressives.  Acta Psychiatr Scand. 1993;  88 434-439
  • 6 Cassano G B, Musetti L, Soriani A, Savino M. The pharmacologic treatment of depression: drug selection criteria.  Pharmacopsychiatry. 1993;  26 (suppl 1) 17-23
  • 7 Checkley S. Monoamines, depression and antidepressant drugs.  Pharmacopsychiatry. 1988;  21 6-8
  • 8 Coplan J D, Papp L A, Pine D, Martinez J, Cooper T, Rosenblum L A. et al . Clinical improvement with fluoxetine therapy and noradrenergic function in patients with panic disorder.  Arch Gen Psychiatry. 1997;  54 643-648
  • 9 De Bellis M D, Geracioti T D, Altemus M, Kling M A. Cerebrospinal fluid monoamine metabolites in fluoxetine-treated patients with major depression and in healthy volunteers.  Biol Psychiatry. 1993;  33 636-641
  • 10 Grant M M, Weiss J M. Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiologic activity.  Biol Psychiatry. 2001;  49 117-129
  • 11 Grossmann F, Potter W Z. Catecholamines in depression: a cumulative study of urinary norepinephrine and its major metabolites in unipolar and bipolar depressed patients versus healthy volunteers at the NIMH.  Psychiatry Res. 1999;  30 21-27
  • 12 Hall H, Sä Llemark M, Wedel I. Acute effects of atypical antidepressants on various receptors in the rat brain.  Acta Pharmacol Et Toxicol. 1984;  54 379-384
  • 13 Hochberg H M, Kanter D, Houser V P. Electrocardiographic findings during extended clinical trials of fluvoxamine in depression: one years experience.  Pharmacopsychiatry. 1995;  28 253-256
  • 14 Hudson J I, McElroy S L, Raymond N C, Crow S, Keck PE J r, Carter W P, Mitchell J E, Strakowski S M, Pope HG J r, Coleman B S, Jonas J M. Fluvoxamine in the treatment of binge-eating disorder: a multicenter placebo-controlled, double-blind trial.  Am J Psychiatry. 1998;  155 1756-1762
  • 15 Jenner P, Marsden C D. The mode of action of sulpiride as an atypical antidepressant agent. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: Clinical practice. Raven Press New York; 1982: 85-103
  • 16 Jimerson D C. Role of dopamine mechanisms in the affective disorders. In: Meltzer HY (ed) Psychopharmacology 3rd generation. Raven Press New York; 1987: 505-511
  • 17 Karege F, Bovier P, Hilleret H, Guillard J M. Lack of effect of anxiety on total plasma MHPG in depressed patients.  J Affect Disord. 1993;  28 211-217
  • 18 Ko H C, Lu R B, Shiah I S, Hwang C C. Plasma free 3-methoxy-4-hydroxyphenylglycol predicts response to fluoxetine.  Biol Psychiatry. 1997;  41 774-781
  • 19 Kopin I J. Catecholamine metabolism: basic aspects and clinical significance.  Pharmacol Rev. 1985;  37 333-364
  • 20 Korf J, Van Praag H M. Retarded depression and the dopamine metabolism.  Psychopharmacologia. 1971;  19 199-203
  • 21 Markianos M, Botsis A, Arvantis Y. Biogenic amine metabolites in plasma of drug-naive schizophrenic patients: association with symptomatology.  Biol Psychiatry. 1992;  32 288-292
  • 22 Maas J W, Hattox S E, Greene N M, Landis D H. 3-Methoxy-4-hydroxyphenethyleneglycol production by human brain in vivo.  Science. 1979;  205 1025-1027
  • 23 Maas J W, Koslow S H, Katz M M, Bowden C L, Gibbons R L, Stokes P E. et al . Pretreatment neurotransmitter metabolite levels and response to tricyclic antidepressant drugs.  Am J Psychiatry. 1984;  141 1159-1171
  • 24 Minegishi A, Ishizaki T. Rapid and simple method for the simultaneous determination of 3,4-dihydroxyphenylacetic acid, 5-hydroxyindole-3 -acetic acid and 4-hydroxy-3-methoxyphenylacetic acid in human plasma by high-performance liquid chromatography with electrochemical detection.  J Chromatography. 1984;  308 55-63
  • 25 Minegishi A, Ishizaki T. Determination of free 3-methoxy-4-hydroxyphenylglycol with several other monoamine metabolites in plasma by high-performance liquid chromatography with amperometric detection.  J Chromatography. 1984;  311 51-57
  • 26 Möller H J. Are all antidepressants the same?.  J Clin Psychiatry. 2000;  61 (suppl 6) 24-28
  • 27 Mundo E, Maina G, Uslenghi C. Munticentre, double-blind, comparison of fluvoxamine and clomipramine in the treatment of obsessive-compulsive disorder.  Int Clin Psychopharmacol. 2000;  15 69-76
  • 28 Nagaoka S, Iwamoto N, Arai H. First-episode neuroleptic-free schizophrenics: concentrations of monoamines and their metabolites in plasma and their correlations with clinical response to haloperidol treatment.  Biol Psychiatry. 1997;  41 857-864
  • 29 Nakamura J, Yoshimura R, Ueda N, Eto S. Interaction between fluvoxamine and smoking (nicotine), caffeine, and levomepromazine in Japanese.  Int J Neuropsychopharmacol. 2000;  3 (suppl 1) s244
  • 30 Nakamura J, Yoshimura R, Okuno T, Ueda N, Hachida M, Yasumoto K, Egami H, Maeda H, Nishi M, Aoyagi S. Association of plasma free-3-methoxy-4-hydroxy-phenyl (ethylene) glycol, natural killer cell activity, and delirium in post-operative patients.  Int Clin Psychophramacol. 2000;  16 339-343
  • 31 Racagni G, Brunello N. Physiology to functionality: the brain and neurotransmitter activity.  Int Clin Psychophramacol. 1999;  14 (suppl 1) s3-7
  • 32 Richelson E, Nelson A. Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro.  J Pharmacol Exp Ther. 1984;  230 94-102
  • 33 Roy A, Pickar D, Linnoila M, Doran A R, Ninan P, Paul S M. Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia.  Psychiatry Res. 1985;  15 281-292
  • 34 Rüther E, Degner D, Munzel U, Brunner E, Lenhard G, Biehl J. et al . Antidepressant action of sulpiride. Results of a placebo-controlled double-blind trial.  Pharmacopsychiatry. 1999;  32 127-135
  • 35 Sheline Y, Bardgett M E, Csernansky J G. Correlated reductions in cerebrospinal fluid 5-HIAA and MHPG concentrations after treatment with selective serotonin reuptake inhibitors.  J Clin Psychopharmacol. 1997;  17 11-14
  • 36 Siever L J. Role of noradrenergic mechanism in the etiology of the affective disorders. In: Meltzer HY (eds) Psychophannacology 3rd generation. Raven Press New York; 1987: 493-504
  • 37 Standish-Barry H M, Bouras N, Bridges P K, Watson J P. A randomized double blind group comparative study of sulpiride and amitriptyline in affective disorder.  Psychopharmacology. 1983;  81 258-260
  • 38 Stahl S M. Essential psychopharmacology. Cambridge University Press 2000
  • 39 Szabo S T, Blier P. Effect of combined 5-HT reuptake inhibition and 5-HT2A antagonism on the firing activity of NE neurons.  Soc Neurosci Abstr. 2000;  26 1928
  • 40 Szabo S T, de Montigny C, Blier P. Progressive attenuation of the firing activity of locus coeruleus noradrenergic neurons by sustained administration of selective serotonin reuptake inhibitors.  Int J Neuropsychopharmacol. 2000;  3 1-11
  • 41 The Research Unit on Pediatric Psychopharmacology Anxiety Study Group: Fluvoxamine for the treatment of anxiety disorders in children and adolescents. N Engl J Med 2001 344: 1279-1285
  • 42 Ueda N, Yoshimura R, Nakamura J. Fluvoxamine might improve some depressive symptoms by indirectly influencing noradrenergic neurons.  Int J Neuropsychopharmacol. 2000;  3 (suppl 1) s238
  • 43 Ueda N, Yoshimura R, Shinkai K, Nakamura J. Fluvoxamine-induced nausea.  Psychiatry Res. 2001;  104 259-264
  • 44 Van Scheyen J D, Van Praag H M, Korf J. Controlled study comparing nomifensine and clomipramine in unipolar depression, using the probenecid technique.  Br J Clin Parmacol. 1977;  4 (suppl 2) s179-184
  • 45 Verbeeck W J, Berk M, Paiker J, Jersky B. The prolactin response to sulpiride in major depression: the role of the D2 receptor in depression.  Eur Neuropsychopharmacol. 2001;  11 215-220
  • 46 Ware M R. Fluvoxamine: a review of the controlled trials in depression.  J Clin Psychiatry. 1997;  58 (suppl 5) s15-23
  • 47 Yazici O, Arieioglu F, Gurrit G, Ucok A, Tastaban Y, Ozguroglu M, Durat T, Sahin D. Noradrenergic and serotoninergic depression.  J Affect Disord. 1993;  27 123-129
  • 48 Yoshimura R, Ueda N, Nakamure J. Low dosage of levomepromazine did not increase plasma concentrations of fluvoxamine.  Int Clin Psychopharmacol. 2000a ;  15 233-235
  • 49 Yoshimura R, Nakamura J, Ueda N, Terao T. Effect of risperidone on plasma free 3-methoxy-4-hydroxyphenylglycol (pMHPG) levels in schizophrenic patients: relationship among plasma concentrations of risperidone and 9-hydroxyrisperidone, pMHPG levels, and clinical improvement.  Int Clin Psychopharmacol. 2000b ;  15 175-180
  • 50 Yoshimura R, Yamada Y, Ueda N, Nakamura J. Changes in plasma monoamine metabolites during acute lithium intoxication.  Hum Psychopharmacol. 2000c ;  15 357-360
  • 51 Yoshimura R, Kakihara S, Soya A, Ueda N, Shinkai K, Nakamura J. Effect of clonazepam treatment on antipsychotic drug-induced Meige syndrome and changes in plasma levels of GABA, HVA, and MHPG during treatment.  Psychiatry Clin Neurosci. 2001;  55 543-546

Nobuhisa Ueda

Department of Psychiatry

School of Medicine

University of Occupational and Environmental Health

1-1 Iseigaoka

Yahatanisi-ku

Kitakyusyu, 807-8555

Fukuoka

Japan

Phone: +81 (93) 691-7253

Fax: +81 (93) 692-4894

Email: EZD04735@nifty.com