Zusammenfassung
Die Rolle von GABA- und Adenosinrezeptoren für die Pathophysiologie der Epilepsie
wird in der Literatur betont, es liegen aber vor allem für die Adenosinrezeptoren
widersprüchliche Ergebnisse aufgrund von tierexperimentellen und In-vitro -Studien an menschlichem Hirngewebe vor. Ziel unseres Projektes ist es daher, durch
präoperative Untersuchungen der Benzodiazepinbindungsstellen am GABAA -Rezeptor und des Adenosin-A1 -Rezeptors mit der Positronenemissionstomographie (PET) an gesunden Probanden und
Patienten mit pharmakoresistenter, fokaler temporaler Epilepsie die Rolle der Rezeptoren
zu analysieren. Dieser Schritt wird durch postoperative Untersuchungen der Rezeptoren
mit hochauflösender, quantitativer In-vitro- Rezeptorautoradiographie an neurochirurgisch gewonnenem Hirngewebe derselben Patienten
ergänzt (s. Bidmon et al., dieses Heft). Das von uns begonnene Programm kann durch
ein neuartiges interiktales Messverfahren zur prächirurgischen Epilepsiediagnostik
beitragen: Mittels PET werden innerhalb von 5 Stunden der zerebrale Blutfluss, die
regionale Verteilung der GABAA -Benzodiazepin (BZ)-Bindungsstellen und weltweit erstmalig auch der Adenosin-A1 -Rezeptoren gemessen. Die jetzt vorliegenden ersten Untersuchungen an Probanden zeigen
eine Verteilung der BZ-Bindungsstellen und Adenosin-A1 -Rezeptoren, die weitgehend mit der aus In-vitro- Untersuchungen bekannten regionalen Verteilung dieser Rezeptoren übereinstimmt. Messungen
an einer größeren Gruppe von Patienten werden begonnen.
Abstract
The role of GABA and adenosine receptors in the pathophysiology of epilepsy has been
described, but particularly the role of adenosine receptors is controversely discussed
in publications of animal experiments and in vitro studies of human brain tissue. The aim of our project is an analysis of the role
of these receptors by presurgical studies using positron emission tomography (PET)
in healthy volunteers and patients suffering from pharmacoresistant focal temporal
epilepsy. This step will be supplemented by postoperative measurements of the receptors
using high-resolution, quantitative in vitro receptor autoradiography of neurosurgically removed brain tissue from the same patients
(see Bidmon et al., this volume). Our recently initiated programme using interictal
measurements will contribute to the presurgical diagnostics of epilepsy: within five
hours, the cerebral blood flow, and the regional distributions of benzodiazepine (BZ)
binding sites of the GABAA receptor as well as for the first time that of adenosine A1 -receptors are determined. The first measurements of healthy volunteers show a distribution
pattern of both receptors which fits the pattern known from our own in vitro studies. Measurements of a larger group of patients are in progress.
Key words
Epilepsy - human - adenosine receptors - GABAA receptors - functional imaging - positron emission tomography
Literatur
1
Rosenow F, Lüders H.
Presurgical evaluation of epilepsy.
Brain.
2001;
124
1683-1700
2
Elger C E, Schramm J.
Chirurgische Epilepsietherapie.
Radiologe.
1993;
33
165-171
3 Duncan J S. Neuroimaging methods to evaluate the etiology and consequences of epilepsy. Epilepsy
Res 2002 im Druck
4
Koepp M J, Hammers A, Labbe C, Woermann F G, Brooks D J, Duncan J S.
11 C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI.
Neurology.
2000;
54
332-339
5
Tigaran S, O'Brien J O, Cascino G D.
Advances in neuroimaging: non-substrate-directed partial epilepsy.
Curr Neurol Neurosci Rep.
2001;
1
361-368
6
Henry T R.
Functional neuroimaging with positron emission tomography.
Epilepsia.
1996;
37
1141-1154
7 Henry T R.
PET: cerebral blood flow and glucose metabolism-presurgical localization. In: Henry TR, Duncan J, Bercovic SF (eds) Functional imaging in the epilepsies. Philadelphia;
Lippincott Williams & Wilkins 2000
8
Kuwert T, Bartenstein P, Grunwald F, Herholz K, Larisch R, Sabri O, Biersack H J,
Moser E, Muller-Gartner H W, Schober O, Schwaiger M, Büll U, Heiss W D.
Klinische Wertigkeit der Positronen-Emissions-Tomographie in der Neuromedizin. Positionspapier
zu den Ergebnissen einer interdisziplinären Konsensuskonferenz.
Nervenarzt.
1998;
69
1045-1060
9
Lamusuo S, Pitkanen A, Jutila L, Ylinen A, Partanen K, Kalviainen R, Ruottinen H M,
Oikonen V, Nagren K, Lehikoinen P, Vapalahti M, Vainio P, Rinne J O.
[11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy:
correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology.
Neurology.
2000;
54
2252-2260
10
Juhasz C, Chugani D C, Muzik O, Watson C, Shah J, Shah A, Chugani H T.
Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities
in lesional epilepsy.
Neurology.
2000;
55
825-835
11
Juhasz C, Chugani D C, Muzik O, Shah A, Shah J, Watson C, Canady A, Chugani H T.
Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery
outcome.
Neurology.
2001;
56
1650-1658
12
Szelies B, Sobesky J, Pawlik G, Mielke R, Bauer B, Herholz K, Heiss W D.
Impaired benzodiazepine receptor binding in peri-lesional cortex of patients with
symptomatic epilepsies studied by [11 C]flumazenil PET.
Eur J Neurol.
2002;
9
137-142
13
Niimura K, Muzik O, Chugani D C, Shen C, Chugani H T.
[11 C]flumazenil PET: activity images versusparametric images for the detection of neocortical
epileptic foci.
J Nucl Med.
1999;
40
1985-1991
14
Halldin C, Stone-Elander S, Thorell J O, Persson A, Sedvall G.
[11 C]labelling of Ro 15 - 1788 in two different positions, and also [11 C]labelling of its main metabolite Ro 15 - 3890, for PET studies of benzodiazepine
receptors.
Int J Rad Appl Instrum (A).
1988;
39
993-997
15
Persson A, d'Argy R, Gillberg P G, Halldin C, Litton J E, Swahn C G, Sedvall G.
Autoradiography with saturation experiments of [11 C]Ro 15 - 1788 binding to human brainsections.
J Neurosci Methods.
1991;
36
53-61
16
Holschbach M H, Fein T, Krummeich C, Lewis R G, Wutz W, Schwabe U, Unterlugauer D,
Olsson R A.
A1 adenosine receptor antagonists as ligands for positron emission tomography (PET)
and single-photon emission tomography (SPET).
J Med Chem.
1998;
41
555-563
17 Holschbach M H, Olsson R A, Bier D, Wutz W, Sihver W, Schüller M, Palm B, Coenen H H.
Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18 F]fluoropropyl)-1-propyl-xanthine ([18 F]CPFPX): a potent and selective A1-adenosine receptor antagonist for in vivo imaging. J
Med Chem 2002 im Druck
18
Boy C, Holschbach M, Mühlensiepen H, Herzog H, Shah N J, Olsson R A, Coenen H H, Müller-Gärtner H W.
A1 -adenosine receptor (A1AR) mapping in primate brain using the novel A1AR-antagonist
[18 F]CPFPX.
Neuroimage.
1998;
7 (Suppl)
A39
19
Meltzer C C, Cantwell M N, Greer P J, Ben-Eliezer D, Smith G, Frank G, Kaye W H, Houck P R,
Price J C.
Does cerebral blood flow decline in healthy aging? A PET study with partial-volume
correction.
J Nucl Med.
2000;
41
1842-1848
20
Beason-Held L L, Desmond R E, Herscovitch P, Carson R E.
Bolus injection versus slow infusion of (15 O)water for positron emission tomography activation studies.
J Cereb Blood Flow Metab.
1999;
19
843-852
21
Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, Heiss W D.
The ECAT EXACT HR: performance of a new high resolution positron scanner.
J Comput Assist Tomogr.
1994;
18
110-118
22
Doll J, Zaers J, Trojan H, Bellemann M E, Adam L E, Haberkorn U, Brix G.
Optimierung der Bildqualität von PET-Aufnahmen durch 3D-Datenakquisition und iterative
Bildrekonstruktion Optimization of PET Image Quality by Means of 3D Data Acquisition
and iterative Image Reconstruction.
Nuklearmedizin.
1998;
37
62-67
23
Deichmann R, Good C D, Josephs O, Ashburner J, Turner R.
Optimization of 3D MP-RAGE sequences for structural brain imaging.
Neuroimage.
2000;
12
112-127
24
Held K, Kops E R, Krause B J, Wells W M, Kikinis R, Müller-Gartner H W.
Markov random field segmentation of brain MR images.
IEEE Trans Med Imaging.
1997;
16
878-886
25
Kemna L J, Posse S, Tellmann L, Schmitz T, Herzog H.
Interdependence of regional and global cerebral blood flow during visual stimulation:
an O-15-butanol positron emission tomography study.
J Cereb Blood Flow Metab.
2001;
21
664-670
26
Pietrzyk U, Herholz K, Fink G, Jacobs A, Mielke R, Slansky I, Wurker M, Heiss W D.
An interactive technique for three-dimensional image registration: validation for
PET, SPECT, MRI and CT brain studies.
J Nucl Med.
1994;
35
2011-2018
27
Cunningham V J, Lammertsma A A.
Radioligand studies in brain: kinetic analysis of PET data.
Med Chem Res.
1994;
5
79-96
28
Holthoff V A, Koeppe R A, Frey K A, Paradise A H, Kuhl D E.
Differentiation of radioligand delivery and binding in the brain: validation of a
two-compartment model for [11 C]flumazenil.
J Cereb Blood Flow Metab.
1991;
11
745-752
29
Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C.
A JAVA environment for medical image data analysis: initial application for brain
PET quantitation.
Med Inform (Lond).
1998;
23
207-214
30
Burger C, Buck A.
Requirements and implementation of a flexible kinetic modeling tool.
J Nucl Med.
1997;
38
1818-1823
31
Zilles K, Qu M S, Kohling R, Speckmann E J.
Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative
in vitro receptor autoradiography.
Neuroscience.
1999;
94
1051-1061
32
Angelatou F, Pagonopoulou O, Maraziotis T, Olivier A, Villemeure J G, Avoli M, Kostopoulos G.
Upregulation of A1 adenosine receptors in human temporal lobe epilepsy: a quantitative
autoradiographic study.
Neurosci Lett.
1993;
163
11-14
33
Glass M, Faull R L, Bullock J Y, Jansen K, Mee E W, Walker E B, Synek B J, Dragunow M.
Loss of A1 adenosine receptors in human temporal lobe epilepsy.
Brain Res.
1996;
710
56-68
34
McDonald J W, Garofalo E A, Hood T, Sackellares J C, Gilman S, McKeever P E, Troncoso J C,
Johnston M V.
Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients
with temporal lobe epilepsy.
Ann Neurol.
1991;
29
529-541
35
Najm I, Ying Z, Janigro D.
Mechanisms of epileptogenesis.
Neurol Clin.
2001;
19
237-250
36
Bradford H F.
Glutamate, GABA and epilepsy.
Prog Neurobiol.
1995;
47
477-511
37
Ekonomou A, Sperk G, Kostopoulos G, Angelatou F.
Reduction of α1 adenosine receptors in rat hippocampus after kainic acid-induced limbic seizures.
Neurosci Lett.
2000;
284
49-52
38
Svenningsson P, Hall H, Sedvall G, Fredholm B B.
Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic
study.
Synapse.
1997;
27
322-335
39
Fastbom J, Pazos A, Probst A, Palacios J M.
Adenosine A1 receptors in the human brain: a quantitative autoradiographic study.
Neuroscience.
1987;
22
827-839
40
Shimada Y, Ishiwata K, Kiyosawa M, Nariai T, Oda K, Toyama H, Suzuki F, Ono K, Senda M.
Mapping adenosine α1 receptors in the cat brain by positron emission tomography with [11 C]MPDX.
Nucl Med Biol.
2002;
29
29-37
41
Savic I, Blomqvist G, Halldin C, Litton J E, Gulyas B.
Regional increases in [11 C]flumazenil binding after epilepsy surgery.
Acta Neurol Scand.
1998;
97
279-286
Prof. Dr. Karl Zilles
Institut für Medizin-Forschungszentrum Jülich
52425 Jülich