Zusammenfassung
In der vorliegenden Untersuchung wurden bei Patienten mit pharmakoresistenten Formen der fokalen temporalen Epilepsie neurochirurgisch die kortikalen Foki entfernt und das Gewebe histochemisch, immunhistochemisch und rezeptorautoradiographisch untersucht. Da Hirngewebe von derselben Stelle desselben Patienten auch in elektrophysiologischen und neurochemischen Analysen untersucht wurde (siehe andere Beiträge in diesem Band), bieten die koordinierten Studien aller beteiligten Wissenschaftler eine einmalige Chance zur Analyse der zugrunde liegenden pathophysiologischen Mechanismen sowohl auf struktureller als auch funktioneller Ebene. Wir konnten zeigen, dass Enzyme der oxidativen Stresskaskade Veränderungen aufweisen, die ein deutliches Anzeichen dafür sind, dass Superoxidradikale und Metaboliten aus Superoxid und Stickstoffmonoxid zur zerebralen Schädigung und eventuell auch zur Ausweitung der Foki beitragen können. Zudem ließ sich zeigen, dass die Expression und intrazerebrale Verteilung von so genannten Multi-Drug-Transportern, die im Wesentlichen für die Pharmakoresistenz verantwortlich gemacht werden, verändert war. Weiterhin zeigten die exzitatorischen und inhibitorischen Neurotransmittersysteme im epileptischen Gewebe ein Ungleichgewicht mit einer Verschiebung hin zur Übererregbarkeit, da die Dichten der AMPA-, Kainat- und NMDA-Rezeptoren in allen hier untersuchten Epilepsiefällen hochreguliert waren. Die Hochregulierung der NMDA-Rezeptoren war mit dem Auftreten spontan entladender Neuronen im epileptischem Gewebe korreliert. Die GABAA -Rezeptoren und Benzodiazepinbindungsstellen zeigten dagegen in vielen Fällen eine Abnahme ihrer Dichten im epileptischen Gewebe, wodurch die Imbalance zwischen exzitatorischen und inhibitorischen Transmittersystemen noch weiter verstärkt wird.
Abstract
Brain tissue surgically removed from patients suffering from drug-resistant, focal temporal lobe epilepsy was studied using a variety of histochemical methods such as conventional histochemistry, immunohistochemistry and receptor autoradiography. Since brain tissue from the same site of the same patient was also used for electrophysiological and neurochemical analyses (see other contributions in this volume), coordinated efforts by all participating groups provide a unique chance to study pathological mechanisms associated with epileptic discharges both at functional and structural levels. We found enzymes of the oxidative stress cascade altered in most of the examined biopsies, thus indicating that superoxide radicals as well as NO and superoxide metabolites could play an important role in brain tissue alterations, including the expansion of epileptic foci. Furthermore, the expression and distribution patterns of multi-drug-transporters, to which drug-resistance has been attributed in cases of intractable focal epilepsy, was also found to be impaired in epileptic tissue. However, it remains to be analysed whether alterations of these transporters are the primary cause of epileptic seizures, or whether they develop as a result of pathological changes of the blood-brain barrier associated with the disease. Furthermore, epileptic tissue showed alterations mainly in the glutamatergic and GABAergic systems, characterised by a disturbed balance between the expression of excitatory and inhibitory amino acid transmitter receptors. The densities of AMPA, kainate, and NMDA receptors were found to be increased in all examined biopsies. The up-regulation of the NMDA receptor is correlated with the presence of spontaneously spiking neurons. Contrastingly, the GABAA receptor and benzodiazepine binding site showed down-regulations of their densities.
Key words
Cerebral cortex - epilepsy - oxidative stress - multi-drug-transporters - transmitter receptors
Literatur
1 Treiman L J, Treiman D M. Genetic aspects of epilepsy. In: Wyllie E (ed) The Treatment of Epilepsy. Philadelphia; Lippincott Williams & Wilkins 2001: 115-129
2
Crino P B, Duhaime A C, Baltuch G, White R.
Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia.
Neurology.
2001;
56
906-913
3
Zilles K, Qü M S, Köhling R, Speckmann E-J.
Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography.
Neuroscience.
1999;
94
1051-1061
4
Shtilbans A, Shanske S, Goodman S, Sue C M, Bruno C, Johnson T L, Lava N S, Waheed N, DiMauro S.
G8363A mutation in the mitochondrial DNA transfer ribonucleic acid Lys gene: another cause of Leigh syndrome.
J Child Neurol.
2000;
15
759-761
5
Blümcke I, Beck H, Lie A A, Wiestler O D.
Molecular neuropathology of human mesial temporal lobe epilepsy.
Epilepsy Res.
1999;
36
205-223
6
Speckmann E-J, Köhling R, Straub H, Wolf P, Ebner A, Tuxhorn I, Pannek H W, Rambeck B, Zilles K, Coenen H H, Löscher W.
Perioperative Untersuchungen in der Epilepsiechirugie: Eine Einführung.
Klin Neurophysiol.
2002;
33
144-146
7
Bidmon H J, Emde B, Kowalski T, Schmitt M, Mayer B, Kato K, Asayama K, Witte O W, Zilles K.
Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.
J Chem Neuroanat.
2001;
22
167-184
8
Celio M R, Spreafico R, de Biasi S, Vitellaro-Zuccarello L.
Perineuronal nets: past and present.
Trends Neurosci.
1998;
21
510-515
9
Löscher W.
Current status and future directions in pharmacotherapy of epilepsy.
Trends Pharmacol Sci.
2002;
23
113-118
10
Judas M, Sestan N, Kostovic L.
Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals.
Microsc Res Tech.
1999;
45
401-419
11
Kara P, Friedlander M J.
Dynamic modulation of cerebral cortex synaptic function by nitric oxide.
Prog Brain Res.
1998;
118
183-198
12 Bidmon H-J, Pannek H-W, Lahl R, Speckmann E-J, Zilles K. Dysplastic cell types in cerebral cortex biopsies obtained during hemispherectomy and focal resections from patients with intractable epilepsy: an immunohistochemical characterization of cytoskeletal components and enzymes of the oxidative stress cascade. In: Elsner N, Kreutzberg GW (eds) The Neuroscience at the Turn of the Century; Proceedings of the 4th Meeting of the German Neuroscience Soc. Suttgart; Thieme 2001 Vol. II: 998
13
Wallace M N, Brown I E, Cox A T, Harper M S.
Pyramidal neurons in human precentral gyrus contain nitric oxide synthase.
Neuroreport.
1995;
6
2532-2536
14
Sohn Y K, Ganju N, Bloch K D, Wands J R, de la Monte S M.
Neuritic sprouting with aberrant expression of nitric oxide synthase III gene in neurodegenerative diseases.
J Neurol Sci.
1999;
162
133-151
15
Lüth H J, Holzer M, Gertz H J, Arendt T.
Aberrant expression of nNOS in pyramidal neurons in Alzheimer's disease is highly co-localized with p21ras and p16INK4a.
Brain Res.
2000;
852
45-55
16
Gonzalez-Hernandez T, Garcia-Marin V, Perez-Delgado M M, Gonzalez-Gonzalez M L, Rancel-Torres N, Gonzalez-Feria L.
Nitric oxide synthase expression in the cerebral cortex of patients with epilepsy.
Epilepsia.
2000;
41
1259-1268
17
Martin R, Gutierrez A, Penafiel A, Marin-Padilla M, de la Calle A.
Persistence of Cajal-Retzius cells in the adult human cerebral cortex. An immunohistochemical study.
Histol Histopathol.
1999;
14
487-490
18
Yermakova A, O'Banion M K.
Cyclooxygenases in central nervous system: implications for treatment of neurological disorders.
Curr Pharmaceut Design.
2000;
6
1755-1776
19
O'Banion M K.
Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology.
Crit Rev Neurobiol.
1999;
13
45-82
20
Bidmon H-J, Oermann E, Schiene K, Schmitt M, Kato K, Asayama K, Witte O W, Zilles K.
Unilateral upregulation of cyclooxygenase-2 (COX-2) following cerebral, cortical photothrombosis in the rat: Suppression by MK-801 and co-distribution with enzymes involved in the oxidative stress cascade.
J Chem Neuroanat.
2000;
20
163-176
21
Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimizu K, Umegae N, Hayase N, Shiono H, Kobayashi S.
Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases.
Ann Neurol.
2000;
47
524-527
22
Estevez A G, Sampson J B, Zhuang Y X, Spear N, Richardson G J, Crow J P, Tarpey M M, Barbeito L, Beckman J S.
Liposome-delivered superoxide dismutase prevents nitric oxide-dependent motor neuron death induced by trophic factor withdrawal.
Free Radical Biol Med.
2000;
28
437-446
23
Yamakura F, Taka H, Fujimura T, Murayama K.
Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine.
J Biol Chem.
1998;
273
14085-14089
24
Kurazono S, Okamoto M, Sakiyama J, Mori S, Nakata Y, Fukuoka J, Amano S, Oohira A, Matsui H.
Expression of brain specific chondroitin sulfate proteoglycans, neurocan and phosphacan, in the developing and adult hippocampus of Ihara's epileptic rats.
Brain Res.
2001;
898
36-48
25
Härtig W, Derouiche A, Welt K, Brauer K, Grosche J, Mäder M, Reichenbach A, Brückner G.
Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations.
Brain Res.
1999;
842
15-29
26
Morris N P, Henderson Z.
Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex.
Eur J Neurosci.
2000;
12
828-838
27
Potschka H, Fedrowitz M, Löscher W.
P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain.
Neuroreport.
2001;
12
3557-3560
28
Sisodiya S M, Heffernan J, Squier M V.
Over-expression of P-glycoprotein in malformations of cortical development.
Neuroreport.
1999;
10
3437-3441
29
DeLorenzo R J, Pal S, Sombati S.
Prolonged activation of the N-methyl-d-aspartate receptor-Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture.
Proc Natl Acad Sci USA.
1998;
95
14482-14487
30
Rice A C, DeLorenzo R J.
NMDA receptor activation during status epilepticus is required for the development of epilepsy.
Brain Res.
1998;
782
240-247
31
Doi T, Ueda Y, Tokumaru J, Mitsuyama Y, Willmore L J.
Sequential changes in AMPA and NMDA protein levels during Fe3+ -induced epileptogenesis.
Molecular Brain Res.
2001;
92
107-114
32
Ekonomou A, Smith A L, Angelatou F.
Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced „kindling” model of epilepsy.
Molecular Brain Res.
2001;
95
27-35
33
Okazaki M M, Nadler J V.
Glutamate receptor involvement in dentate granule cell epileptiform activity evoked by mossy fiber stimulation.
Brain Res.
2001;
915
58-69
34
Buchkremer-Ratzman I, August M, Hagemann G, Witte O.
Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain.
Stroke.
1996;
27
1105-1109
35
Luhmann H J, Mittmann T, van Luijtelaar G, Heinemann U.
Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy.
Epilepsy Res.
1995;
22
43-51
36
Joseph S A, Lynd-Balta E.
Evidence for an anatomical substrate of hyperexcitability in human temporal lobe epilepsy: glutamate receptor alterations and reorganized ciscuitry.
Funct Neurol.
2001;
16
347-365
37
Hammers A, Koepp M J, Labbé C, Brooks D J, Thom M, Cunningham V J, Duncan J S.
Neocortical abnormalities of [11 C]-flumazenil PET in mesial temporal lobe epilepsy.
Neurology.
2001;
56
897-906
38
Hammers A, Koepp M J, Richardson M P, Labbé C, Brooks D J, Cunningham V J, Duncan J S.
Central benzodiazepine receptors in malformations of cortical development. A quantitative study.
Brain.
2001;
124
1555-1565
39
Koepp M J, Labbé C, Richardson M P, Brooks D J, Van Paesschen W, Cunningham V J, Duncan J S.
Regional hippocampal [11 C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis.
Brain.
1997;
120
1865-1876
40
Koepp M J, Richardson M P, Brooks D J, Cunningham V J, Duncan J S.
Central benzodiazepine/γ-aminobutyric acidA receptors in idiopathic generalized epilepsy: an [11 C]Flumazenil positron emission tomography study.
Epilepsia.
1997;
38
1089-1097
41
Crino P B, Duhaime A-C, Baltuch G, White R.
Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia.
Neurology.
2001;
56
906-913
42
Kamphuis W, De Rijk T C, Lopes da Silva F H.
Expression of GABAA receptor subunit mRNAs in hippocampal pyramidal and granular neurons in the kindling model of epileptogenesis: an In-situ hybridization study.
Molec Brain Res.
1995;
31
33-47
43
Lahtintn H, Castrén E, Miettinen R, Ylinen A, Paljärvi L, Riekkinen P J.
NMDA-sensitive [3 H]glutamate binding in the epileptic rat hippocampus: an autoradiographic study.
NeuroReport.
1993;
4
45-48
44
Köhling R, Qü M, Zilles K, Speckmann E-J.
Current-source-density profiles associated with sharp waves in human epileptic neocortical tissue.
Neuroscience.
1999;
94
1039-1050
45
Köhling R, Straub H, Speckmann E-J.
Postoperative Untersuchungen: Funktionelle Analysen: Bioelektrische Registrierungen mit konventionellen Methoden und spannungsempfindlichen Farbstoffen.
Klin Neurophysiol.
2002;
33
163-167
Dr. K. Zilles
Institut für Medizin · Forschungszentrum Jülich
52425 Jülich