Zusammenfassung
Die mesiale Temporallappenepilepsie (MTLE), die häufigste Epilepsieform in epilepsiechirurgischen
Serien, ist vergesellschaftet mit Hippokampussklerose (HS). HS ist charakterisiert
durch Nervenzellverlust und durch reaktive Gliose in allen Ammonshornfeldern und der
Fascia dentata. Am stärksten betroffen ist das Cornu ammonis (CA) Feld CA1 und das
Prosubikulum. Gewöhnlich ist die vordere Hippokampusformation schwerer betroffen als
der posteriore Anteil. In der synaptisch reorganisierten Fascia dentata und im Hippokampus
kommt es zu einer pathologischen Umverteilung vorwiegend der Moosfasern („mossy fiber
sprouting”), welche jetzt Dendriten - die durch den Nervenzellverlust denerviert wurden
- hyperinnervieren. Hinsichtlich exzitatorischen Transmitterveränderungen referieren
wir einige neuere Befunde im Zusammenhang mit kortikalen Dysplasien. Wir selbst untersuchten
das inhibitorische GABA-System, einerseits mit In-vivo-1H-Magnetresonanzspektroskopie,
andererseits im epilepsiechirurgisch resezierten Hippokampus. Dabei interessierte
uns vor allem, ob und wie GABAA-Rezeptor-Subtypen im epileptogenen Hippokampus des Menschen verändert sind. Loup
et al. [1] konnten zeigen, dass 1. im normalen menschlichen Hippokampus ein unterschiedliches
neuronspezifisches Expressionsmuster von GABAA-Rezeptor-Untereinheiten vorhanden ist, und zwar sowohl auf regionaler Ebene als auch
auf Zell-Ebene. 2. In MTLE-Patienten gab es in Gebieten mit deutlichem Nervenzellverlust
generell ein vermindertes Expressionsmuster von GABAA-Rezeptor-Untereinheiten. Überlebende Nervenzellen wiesen hingegen spezifische Veränderungen
im Expressionsmuster der drei wichtigsten GABAA-Rezeptor-Untereinheiten auf. Die augenfälligsten Veränderungen betrafen a) eine verstärkte
Anfärbung für spezifische GABAA-Rezeptor-Untereinheiten in den Zellkörpern und apikalen Dendriten der Körnerzellen
bei gleichzeitig verminderter Anfärbung der basalen Dendriten, b) unterschiedliche
Reorganisation der α1-, α2-, und α3-Untereinheiten in CA2 und in Zellen des Hilus, c) partieller und schichtenspezifischer
Verlust von α1-untereinheitpositiven Interneuronen im Hippokampus proper, und d) Veränderungen der
Morphologie in vielen überlebenden Interneuronen, welche immunpositiv für die α1-Unterheinheit sind.
Abstract
Mesial temporal lobe epilepsy (MTLE), the most frequent type of epilepsy in surgical
series, is associated with hippocampal sclerosis (HS). HS is characterized by neuronal
loss and reactive gliosis in all fields of Cornu Ammonis (CA) and the fascia dentata,
but CA1 and the prosubiculum show the most severe sclerotic changes, and usually the
anterior hippocampus is more severely affected than the posterior part. In the synaptically
reorganized fascia dentata a pathological rearrangement, in particular of the mossy
fibers („mossy fiber sprouting”), is observed, which leads to hyperinnnervation of
previously denervated dendrites due to neuronal loss. With reference to changes of
excitatory neurotransmitters we report some recent findings in the context of cortical
dysplasia. Our own research concentrated on the inhibitory GABA system with In-vivo 1H-magnetic resonance spectroscopy, and on immunohistochemical studies in resected
epileptogenic hippocampi. In particular, we examined whether and how GABAA receptor subtypes are altered in human epileptogenic hippocampus. Loup et al. [1] showed that 1. in the normal human hippocampus a differential and neuron-specific
expression pattern of GABAA receptor subunits is evident, both at the regional and the cellular level. 2. In
MTLE patients with HS, staining is decreased in areas of prominent cell loss, whereas
surviving neurons exhibit selective alterations in the expression of the three major
GABAA receptor subtypes. The most striking changes are a) increased staining for distinct
GABAA receptor subunits on the somata and apical dendrites of granule cells with reduced
labelling on the basal dendrites, b) differential reorganization of the α1-, α2-, and α3-subunits in the CA2 area and in hilar cells, c) partial and layer-specific loss of
α1-subunit-positive interneurons in the hippocampus proper, and d) altered dendritic
morphology in many of the surviving interneurons immunopositive for the α1-subunit.
Key words
Mesial temporal lobe epilepsy - Hippocampal sclerosis - Transmitters, GABAA receptor subtype alterations in human epileptogenic hippocampus
Literatur
- 1
Loup F, Wieser H G, Yonekawa Y, Aguzzi A, Fritschy J M.
Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy.
J Neuroscience.
2000;
20
5401-5419
- 2 Wieser H G, Engel J, Williamson P D, Babb T L, Gloor P.
Surgically remediable temporal lobe syndromes. In: Engel J jr (ed) Surgical treatment of the epilepsies. New York; Raven Press 1993:
49-63
- 3
Wieser H G, Yasargil G M.
Selective amygdalohippocampectomy as a surgical treatment of mesiobasal limbic epilepsy.
Surgical Neurology.
1982;
17
445-457
- 4 Yasargil M G, Teddy P J, Roth P.
Selective amygdalohippocampectomy: operative anatomy and surgical technique. In: Simon L, Brihaye J, Guidetti B et al (eds) Advances and Technical Standards in
Neurosurgery. Vienna; Springer 1985: 92-123
- 5
Houser C R.
Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy.
Brain Research.
1990;
535
195-204
- 6
Duc C O, Trabesinger A H, Weber O M, Meier D, Walder M, Wieser H G, Boesiger P.
Quantitative 1H MRS in the evaluation of mesial temporal lobe epilepsy In-vivo.
Magn Reson Imaging.
1998;
16
969-979
- 7
Mueller S G, Trabesinger A H, Weber O M, Duc C O, Weber B, Meier D, Russ W, Boesiger P,
Wieser H G.
Effects of Vigabatrin on brain GABA+/CR signals in epileptics monitored by 1H-NMR-spectroscopy:
Responder characteristics.
Epilepsia.
2001;
42
29-40
- 8
Braak E, Olbrich H G, Braak H, Wieser H G, Oertel W H.
Glutamic acid decarboxylase immunoreactivity in sector CA1 of the human Ammon's horn.
Anat Embryol.
1986;
175
15-23
- 9 Wieser H G, DO K Q, Perschak H, Cuénod M. Modulation of extracellular aspartate
level during epileptiform events in primary epileptogenic area of patients. Satellite
Symposium of the XXXI Internat. Cong. Physiological Sciences, Helsinki: Physiology,
Pharmacology and Development of Epileptogenic Phenomena (Abstract). Frankfurt; July
1989: 4-8
- 10
Garcia-Ladona F J, Palacios J M, Probst A, Wieser H G, Mengod G.
Excitatory amino acid AMPA receptor mRNA localization in several regions of normal
and neurological disease affected human brain. An in situ hybridization histochemistry
study.
Molecular Brain Research.
1994;
21
75-84
- 11 Do K Q, Klancnik J, Gähwiler B, Perschak H, Wieser H G, Cuènod M.
Release of excitatory amino acids: animal studies and epileptic foci studies in humans. In: Meldrum BS, Moroni F, Simon RP, Woods JH (eds) Excitatory Amino Acids. New York;
Raven Press Ltd 1991: 677-685
- 12 Babb T L.
Research on neurotransmitters in human epileptic hippocampus. In: Lüders HO, Comair YG (eds) Epilepsy Surgery, Second Edition. Philadelphia; Lippincott-Raven
2001: 935-940
- 13
Zhu W J, Roper S N.
Reduced inhibition in an animal model of cortical dysplasia.
J Neurosci.
2001;
20
8925-8931
- 14
White R, Hua Y, Scheithauer B, Lynch D R, Henske E P, Crino P B.
Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic
neurons and giant cells of cortical tubers.
Ann Neurol.
2001;
49
67-78
- 15
Crino P B, Duhaime A-C, Baltuch G, White R.
Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical
dysplasia.
Neurology.
2001;
56
906-913
- 16
Hammers A, Koepp M J, Richardson M P, Labbé C, Brooks D J, Cunningham V J, Duncan J S.
Central benzodiazepine receptors in malformations of cortical development: A quantitative
study.
Brain.
2001;
124
1555-1565
- 17
Chugani D C, Chugani H T, Muzik O, Shah J R, Shah A K, Canady A, Mangner T J, Chakraborty P K.
Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan
positron emission tomography.
Ann Neurol.
1998;
44
858-866
- 18
Loup F, Weinmann O, Yonekawa Y, Aguzzi A, Wieser H G, Fritschy J M.
A highly sensitive immunofluorescence procedure for analyzing the subcellular distribution
of GABAA receptor subunits in the human brain.
J Histochemistry Cytochemistry.
1998;
46
1129-1139
- 19
Zumsteg D, Wieser H G.
Presurgical evaluation: Current role of invasive EEG.
Epilepsia.
2000;
41, Suppl 3
55-60
- 20
Wieser H G, Schwarz U.
Topography of foramen ovale electrodes by 3D image reconstruction.
Clinical Neurophysiology.
2001;
112
2053-2056
- 21
Mathern G W, Pretorius J K, Babb T L.
Influence of the type of initial precipitating injury and at what age it occurs on
course and outcome in patients with temporal lobe seizures.
J Neurosurg.
1995;
82
220-227
- 22
Somogyi P, Takagi H.
A note on the use of picric acid-paraformaldehyde-glutaraldehyde fixative for correlated
light and electron microscopic immunocytochemistry.
Neuroscience.
1982;
7
1779-1783
- 23
Fritschy J M, Weinmann O, Wenzel A, Benke D.
Synapse-specific localization of NMDA and GABAA receptor subunits revealed by antigen-retrieval immunohistochemistry.
J Comp Neurol.
1998;
390
194-210
- 24
Schoch P, Richards J G, Häring P, Takacs B, Stähli C, Staehelin T, Haefely W, Möhler H.
Co-localization of GABAA receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies.
Nature.
1985;
314
168-171
- 25
Ewert M, Shivers B D, Luddens H, Möhler H, Seeburg P H.
Subunit selectivity and epitope characterization of mAbs directed against the GABAA/benzodiazepine receptor.
J Cell Biol.
1990;
110
2043-2048
- 26
Fritschy J M, Möhler H.
GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular
distribution of seven major subunits.
J Comp Neurol.
1995;
359
154-194
- 27
Waldvogel H J, Kubota Y, Fritschy J M, Möhler H, Faull R L.
Regional and cellular localisation of GABAA receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical
study.
J Comp Neurol.
1999;
415
313-340
- 28
Hsu S M, Raine L, Fanger H.
Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison
between ABC and unlabeled antibody (PAP) procedures.
J Histochem Cytochem.
1981;
29
577-580
- 29
Lorente de Nó R.
Studies on the structure of the cerebral cortex. II Continuation of the study of the
ammonic system.
J Psychol Neurol.
1934;
46
113-177
- 30 Amaral D G, Insausti R.
Hippocampal formation. In: Paxinos G (ed) The human nervous system. Boston; Academic 1990: 711-754
- 31
Möhler H, Fritschy J M, Lüscher B, Rudolph U, Benson J, Benke D.
The GABAA receptors. From subunits to diverse functions.
Ion Channels.
1996;
4
89-113
- 32
Faull R L, Villiger J W.
Benzodiazepine receptors in the human hippocampal formation: a pharmacological and
quantitative autoradiographic study.
Neuroscience.
1988;
26
783-790
- 33
Houser C R, Olsen R W, Richards J G, Möhler H.
Immunohistochemical localization of benzodiazepine/GABAA receptors in the human hippocampal formation.
J Neurosci.
1988;
8
1370-1383
- 34
Hand K S, Baird V H, Van Paesschen W, Koepp M J, Revesz T, Thom M, Harkness W F, Duncan J S,
Bowery N G.
Central benzodiazepine receptor autoradiography in hippocampal sclerosis.
Br J Pharmacol.
1997;
122
358-364
Prof. Dr. med. Heinz Gregor Wieser
Abteilung für Epileptologie und Elektroenzephalographie · Neurologische Klinik · Universitätsspital
8091 Zürich · Schweiz
Email: hgwepi@neurol.unizh.ch