Abstract
Microwave irradiation is used to accelerate Pauson-Khand
reactions. The conditions for the Pauson-Khand reaction, catalytic
in Co2 (CO)8 under microwave irradiation, were
optimized. It is possible to obtain various types of [2+2+1] cycloaddition
products in 5 minutes without additional carbon monoxide.
Key words
microwave - Pauson-Khand reaction - catalysis - cobalt - cycloaddition
References
1 Transition metal catalyzed reactions
in organic synthesis, part 2. For part 1, see: Jung M.
Groth U.
Synlett
2002,
12:
2015
2a
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J. Chem. Soc., Chem. Commun.
1971,
36
2b
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J.
Chem. Soc., Perkin Trans. 1
1973,
975
2c
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J.
Chem. Soc., Perkin Trans. 1
1973,
977
For reviews, see:
3a
Pauson PL.
Tetrahedron
1985,
41:
5855
3b
Schore NE.
Chem. Rev.
1988,
88:
1081
3c
Geis O.
Schmalz HG.
Angew. Chem. Int.
Ed.
1998,
37:
911
3d
Chung YK.
Coord. Chem. Rev.
1999,
188:
297
3e
Brummond KM.
Kent JL.
Tetrahedron
2000,
56:
3263
3f
Buchwald SL.
Hicks FA. In
Comprehensive Asymmetric Catalysis
Vol.
II:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer-Verlag;
Berlin,
Heidelberg:
2000.
Chap. 15.
p.1-20
4a
Jamison TF.
Shambayati S.
Crowe WE.
Schreiber SL.
J. Am. Chem. Soc.
1997,
119:
4353
4b
Kerr WJ.
McLaughlin M.
Pauson PL.
Robertson SM.
J. Organomet.
Chem.
2001,
630:
104
4c
Murray A.
Hansen JB.
Christensen BV.
Tetrahedron
2001,
57:
7383
4d
Velcicky J.
Lex J.
Schmalz H.-G.
Org.
Lett.
2002,
4:
565
5a See
ref. 2c.
5b
Jeong N.
Hwang SH.
Lee Y.
Chung YK.
J. Am. Chem. Soc.
1994,
116:
3159
5c
Pagenkopf BL.
Livinghouse T.
J. Am.
Chem. Soc.
1996,
118:
2285
5d
Jeong N.
Hwang SH.
Lee YW.
Lim JS.
J. Am. Chem. Soc.
1997,
119:
10549
5e
Sugihara T.
Yamada M.
Ban H.
Yamaguchi M.
Kaneko C.
Angew. Chem.,
Int. Ed. Engl.
1997,
36:
2801
5f
Sugihara T.
Yamaguchi M.
J. Am. Chem. Soc.
1998,
120:
10782
5g
Kim JW.
Chung YK.
Synthesis
1998,
142
5h
Belanger DB.
O’Mahony DJR.
Livinghouse T.
Tetrahedron Lett.
1998,
39:
7637
5i
Krafft ME.
Bonaga LVR.
Hirosawa C.
Tetrahedron Lett.
1999,
40:
9171
5j
Krafft ME.
Bonaga LVR.
Hirosawa C.
Tetrahedron Lett.
1999,
40:
9177
5k
Krafft ME.
Bonaga LVR.
Synlett
2000,
959
5l
Krafft ME.
Bonaga LVR.
Angew.
Chem. Int. Ed.
2000,
39:
3676
5m
Sughihara T.
Yamaguchi MN.
Nishizawa M.
Chem.-Eur.
J.
2001,
7:
1589
6
Gedye RN.
Smith F.
Westawya K.
Ali H.
Baldisera L.
Laberge L.
Rousell J.
Tetrahedron
Lett.
1986,
27:
279
For reviews, see:
7a
Gabriel C.
Gabriel S.
Grant HG.
Halstead BSJ.
Mingos DMB.
Chem. Soc. Rev.
1998,
27:
213
7b
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
7c
Lidström P.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
7d
Kuhnert N.
Angew.
Chem. Int. Ed.
2002,
42:
1863
7e
Larhed M.
Moberg C.
Hallberg A.
Acc.
Chem. Res.
2002,
35:
717
See ref. 5e. For reactivity of Co2 (CO)6 -alkyne
complexes, see:
8a
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
8b
Melikyan GG.
Nicholas KM. In
Modern Acetylene Chemistry
Stang PJ.
Diederich F.
Wiley VCH;
Weinheim:
1995.
Chap.
4.
p.99-138
8c
Fischer S.
Synlett
2002,
1558
9 It should be stated that low boiling
solvents usually cannot be heated to 200 °C but
in our case the desired temperature could be reached in all cases
except dichloromethane, which reached a maximum at 140 °C.
10 All experiments were preformed using
a Smith Synthesizer from Personal Chemistry. For a detailed instrument description,
see: Stadler A.
Kappe CO.
Comb. Chem.
2001,
3:
624
11 Deposition of a metal film has recently
also been observed in a Pd(OAc)2 catalyzed C-P
cross-coupling reaction: Stadler A.
Kappe CO.
Org. Lett.
2002,
4:
3541
12 When conventional heating of the sealed
vessel was provided under identical conditions the yield did not
exceed 40% even after 4 h.
13
Typical Experimental
Procedure: To a 10 mL glass vial 942 mg (10 mmol, 5 equiv)
norbornene 1 and 137 mg (0.4 mmol, 0.2
equiv) Co2 (CO)8 were added under an inert
gas atmosphere in a glove box and sealed with a Teflon septum and
an aluminum crimp top. After the addition of 2 mL toluene (freshly
distilled from sodium), 220 µL (2 mmol) phenylacetylene 2 and finally 275 µL (2.4 mmol,
1.2 equiv) cyclohexylamine were added through the Teflon septum. The
vessel was then heated to 100 °C under microwave irradiation
using the Smith Synthesizer (monomode microwave cavity at 2.45 GHz;
temperature control by automated adjustment of irradiation power
in a range from 0 to 300 W). After 300 s the vial was cooled
to r.t. by gas jet cooling. The reaction mixture was then subjected
to a typical aqueous workup. The dried organic phase was then liberated from
solvent and purified by flash chromatography on silica eluting with
EtOAc/petroleum ether to give 363 mg (1.62 mmol, 81%)
of exo -3 .
All spectral data were in full
accordance with those reported in literature:
14a Entry 1: Devasagayaraj A.
Periasamy M.
Tetrahedron
Lett.
1989,
30:
595
14b Entry 3: Hayakawa K.
Schmid H.
Helv. Chim.
Acta
1977,
60:
2160
14c Entry 4: Grossman RB.
Buchwald SL.
J.
Org. Chem.
1992,
57:
5803
14d Entry 2: 1 H
(CDCl3 , 400 MHz): δ = 7.00
(d, J = 2.4 Hz,
1 H), 2.54 (sept., J = 6.6
Hz, 1 H), 2.48 (m, 1 H), 2.30 (m, 1 H), 2.08 (m, 2 H), 1.58 (m,
1 H), 1.51 (m, 1 H), 1.21 (m, 2 H), 1.01 (d, J = 6.6
Hz, 6 H), 0.86 (m, 2 H). 13 C (CDCl3 ,
100 MHz): δ = 210.7, 156.5,
155.4, 54.1, 47.7, 38.9, 37.9, 30.8, 29.0, 28.3, 24.5, 21.5, 21.2.