Abstract
Microwave irradiation is used to accelerate Pauson-Khand
reactions. The conditions for the Pauson-Khand reaction, catalytic
in Co2 (CO)8 under microwave irradiation, were
optimized. It is possible to obtain various types of [2+2+1] cycloaddition
products in 5 minutes without additional carbon monoxide.
Key words
microwave - Pauson-Khand reaction - catalysis - cobalt - cycloaddition
References
<A NAME="RG27602ST-1">1 </A> Transition metal catalyzed reactions
in organic synthesis, part 2. For part 1, see:
Jung M.
Groth U.
Synlett
2002,
12:
2015
<A NAME="RG27602ST-2A">2a </A>
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J. Chem. Soc., Chem. Commun.
1971,
36
<A NAME="RG27602ST-2B">2b </A>
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J.
Chem. Soc., Perkin Trans. 1
1973,
975
<A NAME="RG27602ST-2C">2c </A>
Khand IU.
Knox GR.
Pauson PL.
Watts WE.
J.
Chem. Soc., Perkin Trans. 1
1973,
977
For reviews, see:
<A NAME="RG27602ST-3A">3a </A>
Pauson PL.
Tetrahedron
1985,
41:
5855
<A NAME="RG27602ST-3B">3b </A>
Schore NE.
Chem. Rev.
1988,
88:
1081
<A NAME="RG27602ST-3C">3c </A>
Geis O.
Schmalz HG.
Angew. Chem. Int.
Ed.
1998,
37:
911
<A NAME="RG27602ST-3D">3d </A>
Chung YK.
Coord. Chem. Rev.
1999,
188:
297
<A NAME="RG27602ST-3E">3e </A>
Brummond KM.
Kent JL.
Tetrahedron
2000,
56:
3263
<A NAME="RG27602ST-3F">3f </A>
Buchwald SL.
Hicks FA. In
Comprehensive Asymmetric Catalysis
Vol.
II:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer-Verlag;
Berlin,
Heidelberg:
2000.
Chap. 15.
p.1-20
<A NAME="RG27602ST-4A">4a </A>
Jamison TF.
Shambayati S.
Crowe WE.
Schreiber SL.
J. Am. Chem. Soc.
1997,
119:
4353
<A NAME="RG27602ST-4B">4b </A>
Kerr WJ.
McLaughlin M.
Pauson PL.
Robertson SM.
J. Organomet.
Chem.
2001,
630:
104
<A NAME="RG27602ST-4C">4c </A>
Murray A.
Hansen JB.
Christensen BV.
Tetrahedron
2001,
57:
7383
<A NAME="RG27602ST-4D">4d </A>
Velcicky J.
Lex J.
Schmalz H.-G.
Org.
Lett.
2002,
4:
565
<A NAME="RG27602ST-5A">5a </A>
See
ref. 2c.
<A NAME="RG27602ST-5B">5b </A>
Jeong N.
Hwang SH.
Lee Y.
Chung YK.
J. Am. Chem. Soc.
1994,
116:
3159
<A NAME="RG27602ST-5C">5c </A>
Pagenkopf BL.
Livinghouse T.
J. Am.
Chem. Soc.
1996,
118:
2285
<A NAME="RG27602ST-5D">5d </A>
Jeong N.
Hwang SH.
Lee YW.
Lim JS.
J. Am. Chem. Soc.
1997,
119:
10549
<A NAME="RG27602ST-5E">5e </A>
Sugihara T.
Yamada M.
Ban H.
Yamaguchi M.
Kaneko C.
Angew. Chem.,
Int. Ed. Engl.
1997,
36:
2801
<A NAME="RG27602ST-5F">5f </A>
Sugihara T.
Yamaguchi M.
J. Am. Chem. Soc.
1998,
120:
10782
<A NAME="RG27602ST-5G">5g </A>
Kim JW.
Chung YK.
Synthesis
1998,
142
<A NAME="RG27602ST-5H">5h </A>
Belanger DB.
O’Mahony DJR.
Livinghouse T.
Tetrahedron Lett.
1998,
39:
7637
<A NAME="RG27602ST-5I">5i </A>
Krafft ME.
Bonaga LVR.
Hirosawa C.
Tetrahedron Lett.
1999,
40:
9171
<A NAME="RG27602ST-5J">5j </A>
Krafft ME.
Bonaga LVR.
Hirosawa C.
Tetrahedron Lett.
1999,
40:
9177
<A NAME="RG27602ST-5K">5k </A>
Krafft ME.
Bonaga LVR.
Synlett
2000,
959
<A NAME="RG27602ST-5L">5l </A>
Krafft ME.
Bonaga LVR.
Angew.
Chem. Int. Ed.
2000,
39:
3676
<A NAME="RG27602ST-5M">5m </A>
Sughihara T.
Yamaguchi MN.
Nishizawa M.
Chem.-Eur.
J.
2001,
7:
1589
<A NAME="RG27602ST-6">6 </A>
Gedye RN.
Smith F.
Westawya K.
Ali H.
Baldisera L.
Laberge L.
Rousell J.
Tetrahedron
Lett.
1986,
27:
279
For reviews, see:
<A NAME="RG27602ST-7A">7a </A>
Gabriel C.
Gabriel S.
Grant HG.
Halstead BSJ.
Mingos DMB.
Chem. Soc. Rev.
1998,
27:
213
<A NAME="RG27602ST-7B">7b </A>
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
<A NAME="RG27602ST-7C">7c </A>
Lidström P.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RG27602ST-7D">7d </A>
Kuhnert N.
Angew.
Chem. Int. Ed.
2002,
42:
1863
<A NAME="RG27602ST-7E">7e </A>
Larhed M.
Moberg C.
Hallberg A.
Acc.
Chem. Res.
2002,
35:
717
See ref. 5e. For reactivity of Co2 (CO)6 -alkyne
complexes, see:
<A NAME="RG27602ST-8A">8a </A>
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
<A NAME="RG27602ST-8B">8b </A>
Melikyan GG.
Nicholas KM. In
Modern Acetylene Chemistry
Stang PJ.
Diederich F.
Wiley VCH;
Weinheim:
1995.
Chap.
4.
p.99-138
<A NAME="RG27602ST-8C">8c </A>
Fischer S.
Synlett
2002,
1558
<A NAME="RG27602ST-9">9 </A>
It should be stated that low boiling
solvents usually cannot be heated to 200 °C but
in our case the desired temperature could be reached in all cases
except dichloromethane, which reached a maximum at 140 °C.
<A NAME="RG27602ST-10">10 </A> All experiments were preformed using
a Smith Synthesizer from Personal Chemistry. For a detailed instrument description,
see:
Stadler A.
Kappe CO.
Comb. Chem.
2001,
3:
624
<A NAME="RG27602ST-11">11 </A> Deposition of a metal film has recently
also been observed in a Pd(OAc)2 catalyzed C-P
cross-coupling reaction:
Stadler A.
Kappe CO.
Org. Lett.
2002,
4:
3541
<A NAME="RG27602ST-12">12 </A>
When conventional heating of the sealed
vessel was provided under identical conditions the yield did not
exceed 40% even after 4 h.
<A NAME="RG27602ST-13">13 </A>
Typical Experimental
Procedure: To a 10 mL glass vial 942 mg (10 mmol, 5 equiv)
norbornene 1 and 137 mg (0.4 mmol, 0.2
equiv) Co2 (CO)8 were added under an inert
gas atmosphere in a glove box and sealed with a Teflon septum and
an aluminum crimp top. After the addition of 2 mL toluene (freshly
distilled from sodium), 220 µL (2 mmol) phenylacetylene 2 and finally 275 µL (2.4 mmol,
1.2 equiv) cyclohexylamine were added through the Teflon septum. The
vessel was then heated to 100 °C under microwave irradiation
using the Smith Synthesizer (monomode microwave cavity at 2.45 GHz;
temperature control by automated adjustment of irradiation power
in a range from 0 to 300 W). After 300 s the vial was cooled
to r.t. by gas jet cooling. The reaction mixture was then subjected
to a typical aqueous workup. The dried organic phase was then liberated from
solvent and purified by flash chromatography on silica eluting with
EtOAc/petroleum ether to give 363 mg (1.62 mmol, 81%)
of exo -3 .
All spectral data were in full
accordance with those reported in literature:
<A NAME="RG27602ST-14A">14a </A> Entry 1:
Devasagayaraj A.
Periasamy M.
Tetrahedron
Lett.
1989,
30:
595
<A NAME="RG27602ST-14B">14b </A> Entry 3:
Hayakawa K.
Schmid H.
Helv. Chim.
Acta
1977,
60:
2160
<A NAME="RG27602ST-14C">14c </A> Entry 4:
Grossman RB.
Buchwald SL.
J.
Org. Chem.
1992,
57:
5803
<A NAME="RG27602ST-14D">14d </A>
Entry 2: 1 H
(CDCl3 , 400 MHz): δ = 7.00
(d, J = 2.4 Hz,
1 H), 2.54 (sept., J = 6.6
Hz, 1 H), 2.48 (m, 1 H), 2.30 (m, 1 H), 2.08 (m, 2 H), 1.58 (m,
1 H), 1.51 (m, 1 H), 1.21 (m, 2 H), 1.01 (d, J = 6.6
Hz, 6 H), 0.86 (m, 2 H). 13 C (CDCl3 ,
100 MHz): δ = 210.7, 156.5,
155.4, 54.1, 47.7, 38.9, 37.9, 30.8, 29.0, 28.3, 24.5, 21.5, 21.2.