References
- 1
Baguley PA.
Walton JC.
Angew. Chem. Int.
Ed.
1998,
37:
3072
-
2a
Gerigke U.
Gerlach M.
Neumann WP.
Vieler R.
Weintritt V.
Synthesis
1990,
448
-
2b
Gerlach M.
Jordens F.
Kuhn H.
Neumann WP.
Peterseim M.
J.
Org. Chem.
1991,
56:
5971
-
2c
Dumartin G.
Ruel G.
Kharboutli J.
Delmond B.
Connil M.-F.
Jousseaume B.
Pereyre M.
Synlett
1994,
952
-
2d
Chatgilialoglu C.
Griller D.
Lesage M.
J. Org. Chem.
1988,
53:
3641
-
2e
Giese B.
Kopping B.
Chatgilialoglu C.
Tetrahedron
Lett.
1989,
30:
681
-
2f
Ballestri M.
Chatgilialoglu C.
J. Org. Chem.
1991,
56:
678
-
2g
Chatgilialoglu C.
Acc. Chem. Res.
1992,
25:
188
-
2h
Chatgilialoglu C.
Chem. Rev.
1995,
95:
1229
-
2i
Brumwell JE.
Simpkins NS.
Terrett NK.
Tetrahedron Lett.
1993,
34:
1215
-
3a
Quiclet-Sire B.
Zard SZ.
J.
Am. Chem. Soc.
1996,
118:
1209
-
3b
Guyader FL.
Quiclet-Sire B.
Seguin S.
Zard SZ.
J.
Am. Chem. Soc.
1997,
119:
7410
-
3c
Zard SZ.
Angew. Chem., Int. Ed. Engl.
1997,
36:
672
-
4a
Xiang J.
Fuchs PL.
J.
Am. Chem. Soc.
1996,
118:
11986
-
4b
Bertrand F.
Quielet-Sire B.
Zard SZ.
Angew. Chem.
Int. Ed.
1999,
38:
1943
- 5
Kim S.
Song H.-J.
Choi T.-L.
Yoon J.-Y.
Angew. Chem. Int. Ed.
2001,
40:
2524
-
6a
Kim S.
Lim CJ.
Song S.-E.
Kang H.-Y.
Synlett
2001,
688
-
6b
Kim S.
Kim N.
Chung W.-J.
Cho CH.
Synlett
2001,
937
-
6c
Kim S.
Lim CJ.
Song S.-E.
Kang H.-Y.
Chem. Commun.
2001,
1410
-
7a
Barton DHR.
Jaszberenyi JCs.
Theodorakis EA.
Tetrahedron
Lett.
1991,
32:
3321
-
7b
Barton DHR.
Jaszberenyi JCs.
Theodorakis EA.
Tetrahedron
1992,
48:
2613
- 8
Fang J.-M.
Chen M.-Y.
Tetrahedron Lett.
1987,
28:
2853
-
10a
Horowitz A.
Rajbenbach LA.
J.
Am. Chem. Soc.
1975,
97:
10
-
10b
Chatgilialoglu C. In
The Chemistry of
Sulfones and Sulfoxides
Patai S.
Rappoport Z.
Stirling CJM.
Wiley;
Chichester:
1988.
p.1089-1113
-
10c
Bertrand M.
Org.
Prep. Proc. Int.
1994,
26:
257
- 11 According to our competition experiment
between allyl phenyl sulfone and allyltributyltin, the addition
of primary alkyl radicals to allyltributyltin is approximately five
times faster than that onto allyl phenyl sulfone. The rate constant for
the former reaction was known to be in the range of 104-105 M-1s-1: Curran DP.
van Elburg PA.
Giese B.
Giles S.
Tetrahedron
Lett.
1990,
31:
2861
- 12
Kim S.
Lee IY.
Tetrahedron Lett.
1998,
39:
1587
9 Typical procedure for Equation
[2]
: The degassed solution
of ethyl 4-iodobutyrate (4, 48 mg, 0.20
mmol), p-toluene-sulfonyl cyanide (2, 46 mg, 0.24 mmol) and hexamethylditin (79
mg, 0.24 mmol) in benzene (1 mL) was irradiated under 300 nm UV
lamp at room temperature for 2 h. The solvent was evaporated under
reduced pressure and the residue was chromatographed on a silica
gel column (n-hexane/ethyl acetate = 1:5)
to yield ethyl 4-cyanobutyrate (5, 25 mg,
0.18 mmol, 88% yield). 1H NMR (CDCl3,
300 MHz) δ 1.21 (t,
J = 7.1
Hz, 3 H), 1.87-1.97 (m, 2 H), 2.38-2.44 (m, 4
H), 4.09 (q, J = 7.1 Hz, 2 H); 13C
NMR (CDCl3, 100 MHz) δ 14.0, 16.4, 20.6, 32.3,
60.6, 118.9, 171.8; IR (NaCl) 2994, 2950, 2880, 2365, 2344, 2252,
1734, 1458, 1378, 1222, 1198, 1028 cm-1.
13 Typical procedure for Equation
[6]
: The degassed solution of 4-phenoxybutyl
phenyl telluride (13, 65 mg, 0.18 mmol), p-toluenesulfonyl cyanide (2, 70 mg, 0.37 mmol), methyl allyl sulfone
(6, 44 mg, 0.37 mmol) and V-40 (9 mg, 0.037
mmol) in t-butylbenzene (1 mL) was stirred
at 140 °C under N2 for 12 h. The solvent was
evaporated under reduced pressure and the residue was chromatographed
on a silica gel column (n-hexane/ethyl
acetate = 1:10) to yield 5-phenoxy pentanenitrile (29 mg,
0.16 mmol, 89% yield). 1H NMR (CDCl3,
300 MHz) δ 1.85-1.95 (m, 4 H), 2.41-2.45
(t,
J = 6.7 Hz, 2
H), 3.98-4.00 (t, J = 5.7
Hz, 2 H), 6.85-6.92 (d, J = 5.6
Hz, 2 H), 6.93-6.95 (t, J = 7.3
Hz, 1 H), 7.23-7.28 (m, 2 H); 13C
NMR (CDCl3, 100 MHz) δ 16.6, 22.0, 27.8, 66.0,
113.9, 119.0, 120.4, 129.0, 158.2; IR (NaCl) 2946, 2877, 2362, 2343,
2247, 1600, 1498, 1245 cm-1.