References
1a
Tietze LF.
Beifuss U.
Angew.
Chem. Int. Ed. Engl.
1993,
32:
131
1b
Tietze LF.
Chem. Rev.
1996,
96:
115
1c
Tietze LF.
Nachr. Chem. Tech. Lab.
1997,
12:
1181
For reviews, see:
2a
Johnson JS.
Evans DA.
Acc.
Chem. Res.
2000,
33:
325
2b
Jørgensen KA.
Angew. Chem. Int. Ed.
2000,
39:
3558
2c
Evans DA.
Rovis T.
Johnston JS.
Pure Appl. Chem.
1999,
71:
1407
2d
Gosh AK.
Mathivanan P.
Cappiello J.
Tetrahedron: Asymmetry
1998,
9:
1
3a
Christensen C.
Juhl K.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2002,
67:
4875
3b
Pastor IM.
Adolfson H.
Tetrahedron
Lett.
2002,
43:
1743
3c
Juhl K.
Jørgensen KA.
J. Am.
Chem. Soc.
2002,
124:
2420
3d
Christensen C.
Juhl K.
Jørgensen KA.
Chem. Commun.
2001,
2222
3e
Evans DA.
Janey JM.
Org. Lett.
2001,
3:
2125
3f
Juhl K.
Gathergood N.
Jørgensen KA.
Angew. Chem. Int. Ed.
2001,
40:
2995
3g
Zhuang W.
Gathergood N.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2001,
66:
1009
3h
Evans DA.
Tregay SW.
Burgey CS.
Paras NA.
Vojkovsky T.
J. Am. Chem. Soc.
2000,
122:
7936
3i
Evans DA.
Rovis T.
Kozlowski MC.
Downey CW.
Tedrow JS.
J. Am. Chem. Soc.
2000,
122:
9134
3j
Audrain H.
Thorhauge J.
Hazell RG.
Jørgensen KA.
J. Org.
Chem.
2000,
65:
4487
3k
Evans DA.
Johnston JS.
Olhava EJ.
J. Am. Chem. Soc.
2000,
122:
1635
3l
Aggarwal VK.
Elfyn-Jones D.
Martin-Castro AM.
Eur. J. Org. Chem.
2000,
2939
3m
Juhl K.
Gathergood N.
Jørgensen KA.
Chem. Commun.
2000,
2211
3n
Imai Y.
Zhang W.
Kida T.
Nakatsuji Y.
Ikeda I.
J. Org. Chem.
2000,
65:
3326
Catalysis of the Claisen rearrangement,
see:
4a
Abraham L.
Czerwonka R.
Hiersemann M.
Angew.
Chem. Int. Ed.
2001,
40:
4700
4b
Hiersemann M.
Abraham L.
Eur. J. Org. Chem.
2002,
1461
5 Catalysis of the ene reaction, see: Evans DA.
Tregay SW.
Burgey CS.
Paras NA.
Vojkovsky T.
J.
Am. Chem. Soc.
2000,
122:
7936
6
Hiersemann M.
Synthesis
2000,
1279
7
Schlosser M.
Jenny T.
Guggisberg Y.
Synlett
1990,
704
8 Allyl vinyl ether E
-7: 1H NMR (CDCl3,
300 MHz): δ = 5.35 (qt, J
1 = 6.4
Hz, J
2 = 0.9 Hz,
1 H), 5.24 (d, J = 2.4 Hz, 1
H), 5.11-4.97 (m, 2 H), 4.51 (d, J = 2.4
Hz, 1 H), 4.28 (d, J = 6.4 Hz,
2 H), 2.10-1.93 (m, 4 H), 1.61 (s, 6 H), 1.53 (s, 3 H), 1.24
(d, J = 6.2 Hz, 6 H); 13C
NMR (CDCl3, 75.5 MHz): δ = 162.8, 151.4,
140.6, 131.7, 123.8, 118.9, 93.7, 68.9, 65.5, 39.4, 26.2, 25.6,
21.7, 17.6, 16.6; IR(neat): 2979-2858, 1725, 1178 cm-1.
Allyl vinyl ether Z
-7: 1H
NMR (CDCl3, 300 MHz): δ = 5.43 (dt, J
1 = 6.5 Hz, J
2 = 1.4 Hz, 1 H),
5.29 (d, J = 2.3 Hz, 1 H), 5.14-5.05
(m, 2 H), 4.56 (d, J = 2.3 Hz, 1
H), 4.29 (d, J = 6.5 Hz, 2 H),
2.08 (d, J = 3.2 Hz, 4 H), 1.75 (s,
3 H), 1.67,1.59 (2 × s, 2 × 3 H), 1.28 (d, J = 6.2 Hz, 6 H); 13C
NMR (CDCl3, 75.5 MHz): δ = 162.7, 151.5,
141.1, 132.1, 123.6, 119.8, 93.6, 68.9, 65.1, 32.4, 26.4, 25.6,
23.4, 21.7, 17.6; IR(neat): 2955-2872, 1725, 1177 cm-1.
9 General procedure: All reactions were
performed in flame dried septum sealed round bottom flasks under
an atmosphere of argon. 10 mol% Cu(OTf)2 and
12 mol% of the bis(oxazoline) were dissolved in CH2Cl2 (5
mL/mmol of allyl vinyl ether). The green solution was stirred
for 1 h at room temperature. A solution of the allyl vinyl ether
in CH2Cl2 (5 mL/mmol of allyl vinyl
ether) was then added. The reaction mixture was stirred for the
appropriate time at room temperature and then filtered through a
silica gel column (4 × 0.5 cm). The solvents were removed
under reduced pressure to afford a colorless oil which was analytically
pure without further purification. The diastereomers may be separated
by flash chromatography (heptane/ethyl acetate, 20:1).
10
8: 1H
NMR (CDCl3, 500 MHz): δ = 6.21 (dd, J
1 = 17.5 Hz, J
2 = 11.1 Hz), 5.00
(sept, J = 6.2 Hz, 1 H), 4.97
(d, J = 5.9 Hz, 1 H), 4.94 (s,
1 H), 3.04 (s, 1 H), 2.39 (dd, J
1 = 12.7
Hz, J
2 = 3.3 Hz,
1 H), 2.04-1.95 (m, 1 H, 3H), 1.94-1.89 (m, 1 H),
1.78 (d, J = 13.5 Hz, 1 H),
1.70-1.66 (m, 1 H), 1.68 (s, 3 H), 1.44-1.35 (m,
2 H), 1.25 (t, J = 6.2 Hz,
6 H), 0.99 (s, 3 H); 13C NMR (CDCl3,
125 MHz): δ = 175.9, 146.9, 145.9, 113.1, 109.6,
77.3, 69.6, 50.1, 47.7, 36.5, 35.7, 31.5, 23.3, 22.1, 21.7; IR(neat):
3507, 3078-2867, 1719, 1103 cm-1; C16H26O3,
M = 266.38 g/mol: calculated: C = 71.14%,
H = 9.84%; found: C = 72.16%,
H = 9.79%; [α]D
25 -30.5
(c = 0.095, CHCl3); chiral GC: Rt 32.5
min, 25 m 6-O-TBDMS-2,3-di-O-methyl-β-cyclodextrin (50% in
OV 1701, w/w). 9: 1H
NMR (CDCl3, 500 MHz): δ = 6.21 (dd, J
1 = 17.5 Hz, J
2 = 11.1 Hz, 1 H),
5.00 (sept, J = 6.2 Hz, 1 H),
4.97 (d, J = 5.9 Hz, 1 H), 4.94
(s, 1 H), 3.04 (s, 1 H), 2.39 (dd, J
1 = 12.7
Hz, J
2 = 3.3 Hz,
1 H), 2.04-1.95 (m, 1 H), 1.94-1.89 (m, 1 H), 1.78
(d, J = 13.5 Hz, 1 H), 1.70-1.66
(m, 1 H), 1.68 (s, 3 H), 1.44-1.35 (m, 2 H), 1.25 (t, J = 6.2 Hz, 6 H), 0.99 (s, 3
H); 13C NMR (CDCl3, 125
MHz): δ = 175.9, 146.9, 145.9, 113.1, 109.6, 77.3,
69.6, 50.1, 47.7, 36.5, 35.7, 31.5, 23.3, 22.1, 21.7; IR (neat):
3507 cm-1 (OH), 3078-2867,
1719, 1103; C16H26O3, M = 266.38
g/mol: calculated: C = 71.14%, H = 9.84%;
found: C = 72.20%, H = 9.95%; [α]D
25 -25.5
(c = 0.855, CHCl3); chiral GC: Rt 34.4
min.
11 The relative configuration was assigned
based on NOESY experiments and an X-ray crystal structure analysis
of compound 8. The absolute configuration
was assigned based on the established rules for the topicity of [Cu(box)]-catalyzed
Claisen rearrangements (see ref.
[4]
).
12a For
a review article, see: Mikami K.
Shimizu M.
Chem. Rev.
1992,
92:
1021
12b
Kocovsky P.
Ahmed G.
Srogl J.
Malkov AV.
Steele J.
J.
Org. Chem.
1999,
64:
2765 ;
and references cited therein
13
Hiersemann M.
Eur.
J. Org. Chem.
2001,
483