References
1
Thompson LA.
Ellman JA.
Chem. Rev.
1996,
96:
555
For comprehensive reviews, see:
2a
Suzuki A.
Pure
Appl. Chem.
1994,
66:
213
2b
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
3a
Antilla JC.
Buchwald SL.
Org. Lett.
2001,
3:
2077
3b
Evans DA.
Katz JL.
West TR.
Tetrahedron Lett.
1998,
39:
2937
4a
Petasis NA.
Zavialov IA.
J. Am. Chem. Soc.
1997,
119:
445
4b
Ueda M.
Miyaura N.
J. Org. Chem.
2000,
65:
4450
4c
Takaya Y.
Ogasawara M.
Hayashi T.
Sakai M.
Miyaura N.
J.
Am. Chem. Soc.
1998,
120:
5579
5a
Davies MW.
Johnson CN.
Harrity JPA.
Chem. Commun.
1999,
2107
5b
Davies MW.
Johnson CN.
Harrity JPA.
J. Org. Chem.
2001,
66:
3525
5c
Davies MW.
Wybrow RAJ.
Johnson CN.
Harrity JPA.
Chem. Commun.
2001,
1558
6a
Farina F.
Fraile MT.
Martin MR.
Martin MV.
de Guerenu AM.
Heterocycles
1995,
40:
285
6b
Hanson RN.
Mohamed FA.
J.
Heterocycl. Chem.
1997,
34:
345
7
Chiarino D.
Napoletano M.
Sala A.
Tetrahedron
Lett.
1986,
27:
3181
8
Representative
experimental procedure for cyclo-addition reactions: 3-Bromo-5-butyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-isoxazole
3b: A solution of 2-hexyn-1-yl-4,4,5,5-tetramethyl-[1,3,2]dioxa-boralane
(0.90 g, 4.32 mmol), dibromoformaldoxime (0.877 g, 4.32 mmol) and
KHCO3 (0.866 g, 8.65 mmol) in dimethoxyethane (5 mL)
was stirred for 12 h at 50 ºC. The reaction mixture was
cooled, the residual solid removed by vacuum filtration and the
solvent removed in vacuo. Purification by flash chromatography eluting
with hexane-EtOAc, (15:1) followed by kugelrohr distillation
110 °C/ 0.4 mmHg gave the title compound as a
colourless oil (0.627g, 44% yield). 1H
NMR (250 MHz, CDCl3): δ 0.91 (3 H, t, J = 7.0 Hz), 1.22-1.41
(2 H, m), 1.31 (12 H, s), 1.58-1.73 (2 H, m), 2.94 (2 H,
t, J = 7.0 Hz). 13C
NMR (62.9 MHz, CDCl3) δ 13.5, 22.0, 24.8, 26.8,
30.1, 83.8, 144.5, 183.6. FTIR (CHCl3/cm-1):
2978 (s), 2934 (s), 2874 (s), 1741 (m), 1589 (s). Anal. calcd for
C13H21BNO3Br: C, 47.31; H, 6.41;
N, 4.24; Br, 24.21. Found: C, 47.33; H, 6.58; N, 4.23; Br, 24.18. HRMS
calcd for C13H22BNO3
79Br
(MH+): 330.0871, Found: 330.0876. HRMS calcd
for C13H22BNO3
81Br
(MH+): 332.0851, Found: 332.0847.
9 The X-ray data for isoxazole 3a has been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication no. CCDC
191718.
10 For X-ray data of related isoxazole
boronic esters see: Harrity JPA.
Adams H.
Davies MW.
Wybrow RAJ.
Johnson CN.
Acta Cryst.
2002,
C58:
o168
11
Representative
experimental procedure for Suzuki coupling reactions: 3-Bromo-5-butyl-4-(2-nitrophenyl)-isoxazole
7: A solution of boronic ester 3b (0.05
g, 0.15 mmol), PdCl2(dppf)·CH2Cl2 (0.012
g, 0.015 mmol), 1-iodo-2-nitrobenzene (0.075 g, 0.30 mmol) and K3PO4 (0.096
g, 0.45 mmol) in dioxane (1 mL) was stirred at 85 °C under
N2 atmosphere for 16 h. The reaction was quenched with deionised
water (10 mL), and allowed to cool to room temperature. The product
was extracted into CH2Cl2 (3 × 10 mL)
and the organic layer washed with saturated brine (10 mL), dried
(MgSO4), filtered and the filtrate was concentrated in
vacuo to give a brown solid. Purification by flash chromatography
eluting with hexane-EtOAc (100:1) gave the title compound
as yellow oil (0.043 g, 87% yield). 1H
NMR (250 MHz, CDCl3): δ 0.77 (3 H, t, J = 7.0 Hz), 1.13-1.31
(2 H, m), 1.46-1.61 (2 H, m), 2.61 (2 H, t, J = 7.0 Hz), 7.28 (1 H, dd, J = 7.0 Hz, 7.5 Hz), 7.51-7.73
(2 H, m), 8.10 (1 H, dd, J = 8.0
Hz, 1.0 Hz). 13C NMR (62.9 MHz, CDCl3) δ 13.5,
22.1, 25.9, 29.1, 114.8, 123.3, 125.2, 130.2, 133.4, 141.6, 149.1,
171.4. FTIR (CHCl3/cm-1):
2960 (m), 1633 (m), 1601 (m), 1529 (m), 1441 (m). Anal. calcd for C13H13BrN2O3:
C, 48.02; H, 4.03; N, 8.62; Br, 24.57. Found: C, 48.30; H, 4.12;
N, 8.42; Br, 24.66. HRMS calcd for C13H14N2O3
79Br
(MH+): 325.0188. Found: 325.0189. HRMS calcd
for C13H14N2O3
81Br
(MH+): 327.0168. Found: 327.0165.
12
Gagneux AR.
Häfleger F.
Geigy GR.
Basle SA.
Eugster CH.
Good R.
Tetrahedron
Lett.
1965,
25:
2077
13 Preliminary investigations indicate
that 3-haloisoxazoles 4-10 are relatively unreactive towards Pd-catalysed
coupling reactions, nonetheless, there is substantial scope for
the optimisation of this process and these studies are ongoing in our
labs. In contrast, the introduction of amines by SNAr reactions
has been demonstrated: Yevich JP.
New JS.
Smith DW.
Lobeck WG.
Catt JD.
Minelli JL.
J. Med. Chem.
1986,
29:
359
14
Bauer L.
Nambury CNV.
Bell CL.
Tetrahedron
1967,
23:
4395