Subscribe to RSS
DOI: 10.1055/s-2002-35602
A Novel and Efficient Oxidation of 1,2-Amino Alcohols to Dialkylamides
Publication History
Publication Date:
20 November 2002 (online)
![](https://www.thieme-connect.de/media/synlett/200212/lookinside/thumbnails/10.1055-s-2002-35602-1.jpg)
Abstract
The oxidation of 1,2-amino alcohols and α-amino ketones can be efficiently performed using potassium hydroxide in the presence of air. This novel procedure affords carboxylic derivatives in excellent yields and high purity.
Key words
1,2-amino alcohols - α-amino ketones - oxidations - potassium hydroxide - radical reactions
- 1
Camps P.Muñoz-Torrero D.Muñoz-Torrero V. Tetrahedron Lett. 1995, 36: 1917 -
2a
Burton RD.Bartberger MD.Zhang Y.Eyler JR.Schanze KS. J. Am. Chem. Soc. 1996, 118: 5655 -
2b
Chen LH.Farahat MS.Gaillard ER.Farid S.Whitten DG. J. Photochem. Photobiol. A: Chem. 1996, 95: 21 -
2c
Kellett MA.Whitten DG. Res. Chem. Intermed. 1995, 21: 587 -
2d
Gan H.Kellett MA.Leon JW.Kloeppner L.Leinhos U.Gould IR.Farid S.Whitten DG. J. Photochem. Photobiol. A: Chem. 1994, 82: 211 - 3
Yuste F.Origel AE.Breña LJ. Synthesis 1983, 109 -
4a
Benhaliliba H.Derdour A.Bazureau J.-P.Texier-Boullet F.Hamelin J. Tetrahedron Lett. 1998, 39: 541 -
4b
Harris CE.Lee LY.Dorr H.Singaram B. Tetrahedron Lett. 1995, 36: 2921 ; and references therein - 5
Lopez L.Troisi L. Tetrahedron Lett. 1992, 48: 7321 - 6
García-Valverde M.Pedrosa R.Vicente M.García-Granda S.Gutiérrez-Rodríguez A. Tetrahedron 1996, 52: 10761 - 7
García-Valverde M.Nieto J.Pedrosa R.Vicente M. Tetrahedron 1999, 55: 2755 - For oxidations under air in strongly basic solutions, see:
-
8a
Elkik E. Bull. Soc. Chim. Fr. 1959, 933 -
8b
Russell GA.Bemis AG. J. Am. Chem. Soc. 1966, 88: 5491 -
8c
Gersmann HR.Bickel AF. J. Chem. Soc. B 1971, 2230 -
8d
Neumann R.Sasson Y. J. Org. Chem. 1984, 49: 1282 - The starting amino alcohols were purchased from the usual suppliers (1e: 1-dimethylamino-2-propanol, 1f: N-methylephedrine, 1j: 2-dimethylamino-2-methyl-1-propanol, 1k: 1-methyl-2-piperidinemethanol) or synthesized by literature procedures:
-
10a
1a (2-dimethylamino-1-propanol):
Rosnati V. Gazz. Chim. Ital. 1950, 80: 663 -
10b
1b (2-Dibenzylamino-1-propanol)
and 1i (2-Dibenzylamino-2-methyl-1-propanol):
Kerwin JF.Ullyot GE.Fuson RC.Zirkle CL. J. Am. Chem. Soc. 1947, 69: 2961 -
10c
1c (2-Dimethylamino-1-butanol):
Halverstadt IF.Hardie WR.Willians AR. J. Am. Chem. Soc. 1959, 81: 3618 -
10d
1d (2-Dimethylamino-2-phenylethanol):
Miyano S.Lu LD.-L.Viti SM.Sharpless KB. J. Org. Chem. 1985, 50: 4350 -
10e
1g (2-Dibenzylamino-1-phenyl-1-propanol):
Schwan TJ.Lougheed GS.Burrous SE. J. Heterocyclic Chem. 1974, 11: 807 -
10f
1h (2-Butylamino-1-phenyl-1-propanol):
Soai K.Yokoyama S.Hayasaka T. J. Org. Chem. 1991, 56: 4264 - 11 The resulting amides 2a,
2f (dimethylacetamide); 2b, 2g (dibenzylacetamide); 2h (dibutylacetamide); 2c (dimethyl-propanamide); 2d (dimethylbenzamide); 2e (dimethyl-formamide); 2k (1-methyl-2-piperidone) are commercial products
or described in literature; 2l (1-acetylpyrrol-idine):
Al-Sehemi AG.Atkinson RS.Fawcett J. J. Chem. Soc., Perkin Trans 1 2002, 257 -
12a
Huber JE. Tetrahedron Lett. 1968, 3271 -
12b
Foote CS.Dzakpasu AA.Lin JW.-P. Tetrahedron Lett. 1975, 1247 -
12c
Wasserman HH.Terao S. Tetrahedron Lett. 1975, 1735 -
13a The
starting amino ketones were purchased from the usual suppliers (4e: 1-dimethylamino-2-propanone); synthesized
by literature procedures. 4f (2-dimethylamino-1-phenyl-1-propanone):
Welle F.Verevkin SP.Keller M.Beckhaus H.-D.Ruechardt C. Chem. Ber. 1994, 127: 697 -
13b
4l (α-Phenyl-α-pyrrolidinoacetophenone):
Heinzelman RV.Aspergren BD. J. Am. Chem. Soc. 1953, 75: 3409 ; or synthesized by known methods -
13c
4h: (2-Dibutylamino-1-phenyl-1-propanone): Pyridinium chlorochromate (1.29 g, 6 mmol) was added in small portions to a stirred solution of amino alcohol 1h (0.39 g, 1.5 mmol) in CH2Cl2 (30 mL) over 4 Å sieves. The resulting mixture was stirred at r.t. for 6 h and filtered. The solvent was evaporated under reduced pressure. The residue was dissolved in an aqueous solution of NaOH (15% w/v, 10 mL) and extracted with ether. The organic layer was separated, washed with brine and dried (Na2SO4). Removal of the solvent left a residue, which was purified by column chromatography (hexane/EtOAc, 6:1) to yield amino ketone 4h (67%). Colorless liquid. bp 82-84 (0.2 mmHg). IR (neat, cm-1): 1685. 1H NMR (CDCl3, 200 MHz): 0.79 (t, 6 H, J = 12 Hz); 1.04-1.21 (m, 7 H), 1.22-1.38 (m, 4 H); 2.40 (t, 4 H, J = 12 Hz); 4.31 (q, 1 H, J = 9.0 Hz); 7.22-7.50 (m, 3 H); 7.94-8.00 (m, 2 H). 13C NMR (CDCl3, 50 MHz): 9.2 (CH3); 14.0 (CH3); 20.4 (CH2); 30.7 (CH2); 50.7 (CH2); 60.4 (CH); 128.1 (CHAr);128.9 (CHAr); 132.4 (CHAr); 137.0 (CAr); 201.8 (CO). MS (m/z, %): 260 (M+ - 1, 1), 156(100). Anal. Calcd for C17H27NO: C, 78.11; H, 10.41; N, 5.36. Found: C, 78.22; H, 10.63; N, 5.27.
-
14a
Turaeva DA.Kurbatov YV. Russ. J. Org. Chem. 1999, 1092 -
14b
Turaeva DA.Kurbatov YV.Kurbatova AS. Russ. J. Org. Chem. 1995, 739 -
16a
Neelakantan L. J. Org. Chem. 1971, 36: 2256 -
16b
Alcaide B.López-Mardomingo C.Pérez-Ossorio R.Plumet J. J. Heterocyclic Chem. 1982, 19: 45 -
16c
Wu MJ.Pridgen LN. Synlett 1990, 636 -
16d
Aylward JB. Quart. Rev. 1971, 25: 407 -
16e
Royer J.Hüsson HP. J. Org. Chem. 1985, 50: 636
References
Typical experimental procedure: The amino alcohol (1a-k) (0.1 g) was added to a stirred suspension of KOH (1.0 g) in diethyl ether (20 mL). The stirring was continued for the proper time (Table [1] ) at room temperature. The solid was filtered off and washed with ether. The solvent was removed to yield the amide. The solid was dissolved in water and the solution acidified with HCl and extracted with ether. The organic layer was dried and the solvent was removed to yield the corresponding carboxylic acid.
15The EPR studies were made on the reaction mixtures without filtration. Moreover, the evolution of the EPR spectra taken at different reaction times showed the presence of mixtures of radicals as intermediates in these reactions.
17NOESY experiments showed that the angular oxazolidine proton at C-7a was trans to the proton at C-6, indicating an S configuration at this carbon. (2S,3R,6S,7aR)-6-Benzyl-2-phenyl-3-methyl-5-oxo-2,3,5,6,7,7a-hexahydro-pyrrolo-[2,1-b]-oxazole (5). White solid, mp 101-103 ºC. [α]23 D +34.6 (c 1.6, CHCl3). IR (neat, cm-1) 1700. 1H NMR (CDCl3, 300 MHz): 1.00 (d, J = 6.8 Hz, 3 H), 2.19-2.23 (m, 2 H), 2.88 (dd, J = 13.2 Hz, 8.2 Hz, 1 H), 3.06-3.18 (m, 2 H), 3.95 (qd, J = 6.9 Hz, 6.8 Hz, 1 H), 4.95 (t, J = 5.4 Hz, 1 H), 5.19 (d, J = 7.1 Hz, 1 H), 7.20-7.37 (m, 5 H, HAr). 13C NMR (CDCl3, 75 MHz): 13.4 (CH3), 30.7 (CH2), 37.6 (CH2), 48.6 (CH), 54.7 (CH), 85.3(CH), 91.2 (CH), 126.6 (CHAr), 128.0 (CHAr), 128.3 (CHAr), 128.5 (CHAr), 129.1 (CHAr), 136.3 (CAr), 138.5 (CAr), 175.5 (CO). Anal.calcd for C20H21NO2: C, 78.15; H, 6.89; N, 4.56. Found: C, 77.77; H, 7.08; N, 4.35.
18Two isomers were observed at room temperature. (R)-1-Acetyl-2-benzyl pyrrolidine (2m). Colorless oil. [α]D 23 +25.54 (c 1.1, CHCl3), IR (neat, cm-1) 1650. MS (m/z, %): 203 (M+, 32), 91(28), 43(100). 1H NMR (CDCl3, 300 MHz): 1.53-1.75 (m, 2 H), 1.95-2.05 (m, 8 H), 2.41-2.52 (m, 2 H), 2.62-2.69 (m, 4 H), 3.03-3.12 (m, 2 H), 3.33-3.58 (m, 4 H), 3.61-3.68 (m, 2 H), 7.14-7.33 (m, 5 H, HAr). 13C NMR (CDCl3, 75 Mz): 22.2 (CH3), 22.4 (CH3), 30.4 (CH2), 31.7 (CH2), 39.0 (CH2), 39.6 (CH), 41.1 (CH), 45.1 (CH2), 46.9 (CH2), 50.7 (CH2), 52.5 (CH2), 126.2 (CHAr), 126.3 (CHAr), 128.4 (CHAr), 128.5 (CHAr), 128.6 (CHAr), 139.9 (CAr), 169.2 (CO). Anal. Calcd for C13H17NO: C, 76.81; H, 8.43; N, 6.89. Found: C, 76.70; H, 8.62; N, 6.76.