References
1
Cycloaddition
Reactions in Organic Synthesis
Kobayashi S.
Jørgensen KA.
Wiley-VCH;
Weinheim:
2002.
2
Synthetic
Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles
and Natural Products
Padwa A.
Pearson WH.
John
Wiley and Sons;
New York:
2002.
3a
Padwa A.
Weingarten MD.
Chem.
Rev.
1996,
96:
223
3b
Doyle MP.
McKervey MA.
Ye T.
Modern Catalytic Methods
for Organic Synthesis with Diazo Compounds
John
Wiley and Sons;
New York:
1998.
Chap. 7.
3c
Clark JS.
Nitrogen, Oxygen and
Sulfur Ylide Chemistry
Oxford University Press;
Oxford:
2002.
3d
Mehta G.
Muthusamy S.
Tetrahedron
2002,
58:
9477
3e For a recent application,
see: Hodgson DM.
Avery TD.
Donohue AC.
Org.
Lett.
2002,
4:
1809
4
Hodgson DM.
Stupple PA.
Johnstone C.
Tetrahedron Lett.
1997,
38:
6471
5a
Hodgson DM.
Stupple PA.
Johnstone C.
Chem. Commun.
1999,
2185
5b
Hodgson DM.
Stupple PA.
Pierard FYTM.
Labande AH.
Johnstone C.
Chem.-Eur.
J.
2001,
7:
4465
6a
Kitagaki S.
Masahiro A.
Kataoka O.
Matsuno K.
Umeda C.
Watanabe N.
Hashimoto S.
J. Am. Chem. Soc.
1999,
121:
1417
6b
Kitagaki S.
Yasugahira M.
Anada M.
Nakajima M.
Hashimoto S.
Tetrahedron
Lett.
2000,
41:
5931
7a
Hodgson DM.
Pierard FYTM.
Stupple PA.
Chem.
Soc. Rev.
2001,
30:
50
7b
Hodgson DM.
Stupple PA.
Forbes DC. In
Rodd’s
Chemistry of Carbon Compounds, Topical Volume, Asymmetric Catalysis
Sainsbury M.
Elsevier;
Oxford:
2001.
p.65
7c
Kitagaki S.
Hashimoto S.
J. Synth. Org. Chem. Jpn.
2001,
59:
1157
8a
Hodgson DM.
Glen R.
Redgrave AJ.
Tetrahedron Lett.
2002,
43:
3927
8b
Hodgson DM.
Glen R.
Grant GH.
Redgrave AJ.
J.
Org. Chem.
2002, in press
9 A significant erosion in ee (and yield)
has been observed for one (oxidopyrylium) substrate as the dipolarophile
was even varied from DMAD (74% ee) to the corresponding
diethyl ester (46% ee); 25% ee was observed with
the di-tert-butyl ester.
[6b]
10 Results in CH2Cl2 for
all the substrates examined in the current paper are not given here;
as previously found with 1,
[5]
the ees were uniformly lower than
in hexane.
11 Hashimoto’s optimized catalyst-solvent
combination
[6]
was not studied, since
it had previously been shown with 1 to generate
only racemic cycloadduct 3.
[5]
12 Ees were determined directly on the
cycloadducts by GC analysis and comparison with racemic samples
prepared using Rh2(OAc)4 (chiral gas chromatography
was carried out using a CE Instruments Trace GC (Thermoquest) machine with
a CP Chirasil Dex-CD column).
13 NOE experiments support the relative
stereochemistry of the cycloadducts shown in Scheme
[3]
. The absolute configurations
of the predominant cycloadduct enantiomers are tentatively assigned
as those shown, by analogy with cycloadduct (+)-3 of known absolute configuration.
[5]
Selected specific rotation values
(c 1.0, CHCl3): for (+)-14, using 5 at
0 °C: [α]D
24 +38.0;
for (-)-15, using 5 at -15 °C: [α]D
25 -29.7;
for (-)-16, using 5 at
0 °C: [α]D
25 -8.2;
for (+)-17, using 5 at
0 °C: [α]D
24 +23.2.
14
Padwa A.
Hornbuckle SF.
Fryxell GE.
Zhang ZJ.
J. Org.
Chem.
1992,
57:
5747
15 For a recent example, see: Graening T.
Friedrichsen W.
Lex J.
Schmalz H.-G.
Angew.
Chem. Int. Ed.
2002,
41:
1524
16
Typical Procedure
for Cycloadduct (+)-18: To a stirred, degassed
solution tert-butyl 2-diazo-3,6-dioxoundec-10-ynoate
(100 mg, 0.34 mmol) in hexane (5 mL) at 25 °C
was added Rh2[(R)-DDBNP]4 (10
mg, 0.0034 mmol). After 30 min, the reaction mixture was concentrated
in vacuo. The residue was purified by flash chromatography (SiO2,
light petroleum-Et2O 8:2; Rf = 0.11)
to afford a white solid (70 mg, 77%). IR(neat): νmax = 2974,
2923, 1743, 1720, 1368, 1306, 1158, 1057 cm-1. 1H
NMR (400 MHz, CDCl3): δ = 5.86 (t,
1 H, J
4
= 2.0
Hz), 2.89-2.80 (m, 1 H), 2.52-2.24 (m, 4 H), 2.16-2.00
(m, 3 H), 1.97-1.90 (m, 1 H), 1.77-1.69 (m, 1
H), 1.50 (s, 9 H). 13C NMR (100 MHz;
CDCl3): δ = 198.8, 165.1, 157.4, 119.2,
100.2, 96.5, 82.8, 33.0, 32.8, 29.6, 28.0, 26.2, 22.6. MS: m/z (%) [CI + (NH3)] = 282(46) [M + NH4
+], 265(10) [M + H+),
226(100) {M - [CH2C(CH3)2] + NH4
+}. HRMS
(ES, [M + H]+) calcd
265.1440, measured 265.1449. GC analysis for ee determination: (CP
Chirasil Dex-CD,
80° C/1 min/5° Cmin-
1/170° C/100
min, 0.5 mLmin-
1, 2 mgmL-1), t
Rmn = 27.2
min; t
Rmj = 27.9
min.
17
Davies HML.
Eur. J. Org. Chem.
1999,
2459
18 Selected specific rotation values
(c 1.0, CHCl3): for (+)-19, using 5 at -15 °C: [α]D
25 +305.4;
(+)-20, using 5 at
0 °C: [α]D
25 +283.9;
(+)-21, using 5 at
0 °C: [α]D
24 +231.2.