References
<A NAME="RD25502ST-1">1</A>
Matteson DS.
Stereodirected Synthesis with Organoboranes
Springer-Verlag;
Heidelberg:
1995.
<A NAME="RD25502ST-2">2</A>
Morin C.
Tetrahedron
1994,
50:
12521
<A NAME="RD25502ST-3">3</A>
Pelter A.
Smith K.
Brown HC.
Borane Reagents
Academic
Press;
London:
1988.
<A NAME="RD25502ST-4">4</A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RD25502ST-5">5</A>
Beletskaya I.
Pelter A.
Tetrahedron
1997,
53:
4957
<A NAME="RD25502ST-6">6</A>
Matteson DS.
Tetrahedron
1998,
54:
10555
<A NAME="RD25502ST-7">7</A>
Suzuki A.
J.
Organomet. Chem.
1999,
576:
147
<A NAME="RD25502ST-8">8</A>
Bowie RA.
Musgrave OC.
J. Chem. Soc.
1963,
3945
<A NAME="RD25502ST-9">9</A>
Matteson DS.
Ray R.
J. Am. Chem. Soc.
1980,
102:
7590
<A NAME="RD25502ST-10">10</A>
Matteson DS.
Ray R.
Rocks RR.
Tsai DJ.
Organometallics
1983,
2:
1536
<A NAME="RD25502ST-11">11</A>
Ditrich K.
Bube T.
Stürmer R.
Hoffmann RW.
Angew. Chem., Int.
Ed. Engl.
1986,
25:
1028 ; Angew. Chem. 1986, 98, 1016
<A NAME="RD25502ST-12">12</A>
Hoffmann RW.
Ditrich K.
Köster G.
Stürmer R.
Chem. Ber.
1989,
122:
1783
<A NAME="RD25502ST-13">13</A>
Devant R.
Mahler U.
Braun M.
Chem.
Ber.
1988,
121:
397
<A NAME="RD25502ST-14">14</A>
Luithle JEA.
Pietruszka J.
Witt A.
Chem. Commun.
1998,
2651
<A NAME="RD25502ST-15">15</A>
Luithle JEA.
Pietruszka J.
Liebigs
Ann. Recl.
1997,
2297
<A NAME="RD25502ST-16">16</A>
Luithle JEA.
Pietruszka J.
J. Org.
Chem.
1999,
64:
8287
<A NAME="RD25502ST-17">17</A>
Luithle JEA.
Pietruszka J.
Eur.
J. Org. Chem.
2000,
2557
<A NAME="RD25502ST-18">18</A>
Luithle JEA.
Pietruszka J.
J. Org.
Chem.
2000,
65:
9194
<A NAME="RD25502ST-19">19</A>
Tucker CE.
Davidson J.
Knochel P.
J.
Org. Chem.
1992,
57:
3482
<A NAME="RD25502ST-20">20</A>
Pietruszka J.
Witt A.
J. Chem. Soc., Perkin Trans. 1
2000,
4293
<A NAME="RD25502ST-21">21</A>
Huskens J.
Reetz MT.
Eur. J. Org. Chem.
1999,
1775
<A NAME="RD25502ST-22">22</A>
Furukawa J.
Kawabata N.
Nishimura J.
Tetrahedron
1968,
24:
53
<A NAME="RD25502ST-23">23</A>
Denmark SE.
O’Connor SP.
J. Org.
Chem.
1997,
62:
3390
<A NAME="RD25502ST-24">24</A>
Song Y.-L.
Synlett
2000,
1210
<A NAME="RD25502ST-25">25</A>
Zhang A.
Kan Y.
Zhao G.-L.
Jiang B.
Tetrahedron
2000,
56:
965
<A NAME="RD25502ST-26">26</A>
Hoffmann RW.
Dresely S.
Synthesis
1988,
103
<A NAME="RD25502ST-27">27</A>
Kamabuchi A.
Moriya T.
Miyaura N.
Suzuki A.
Synth. Commun.
1993,
23:
2851
<A NAME="RD25502ST-28">28</A>
Experimental Procedure
for the Synthesis of Alkenylboronic Ester 17: Under an atmosphere
of dry nitrogen BH3·SMe2 complex
(0.5 mL, 5 mmol) in THF (5 mL) was cooled to 0 °C.
After addition of α-pinene (1.6 mL, 10 mmol) the reaction
mixture was stirred for 1 h at 0 °C and 2 h at
r.t. A colorless precipitate formed. After the mixture was cooled
to -35 °C, the alkyne (650 mg, 5.2 mmol)
was slowly added. The mixture was stirred at this temperature for 15
min, then allowed to warm to r.t. and continued to stir for 3 h.
Acetaldehyde (5.5 mL, 100 mmol) was carefully added at 0 °C.
The solution was refluxed over night and the excess aldehyde removed
under reduced pressure. The residue was dissolved in THF (5 mL)
and benzpinacol(9) (1.83 g, 5.0 mmol) was
added. The solution was refluxed until TLC indicated no further
transformation. The solvent was removed under reduced pressure and
the crude product subjected to flash-column chromatography on silica
gel, eluting with petroleum ether/diethyl ether (9:1).
A colorless solid was isolated, yield: 1.07 g (2.1 mmol, 43%). Representative
data: 17: [α]D
20 = +30.9
(c 0.97, CHCl3), mp 71-74 °C.
C33H31BO4 (502.41): Calcd C, 78.89;
H, 6.22. Found C, 78.83; H, 6.33. 1H NMR (500
MHz, CDCl3): δ(ppm) = 3.74
(dd, 2
J
5
′′
a,5
′′
b = 9.3 Hz, 3
J
4
′′
,5
′′
a = 7.8 Hz, 1 H, 5′′-Ha),
4.21 (dd, 2
J
5
′′
a,5
′′
b = 9.3 Hz, 3
J
4
′′
,5
′′
b = 6.4 Hz, 1 H, 5′′-Hb),
4.69 (ddd, 3
J
4
′′
,5
′′
a = 7.8 Hz, 3
J
4
′′
,5
′′
b = 6.4 Hz, 3
J
2
′
,4
′′ = 6.3 Hz, 1 H, 4′′-H),
6.15 (d, 3
J
1
′
,2
′ = 18.0 Hz, 1 H, 1′-H),
6.95 (dd, 3
J
1
′
,2
′ = 18.0 Hz, 3
J
2
′
,4
′′ = 6.3 Hz, 2′-H). 13C NMR
(125 MHz, CDCl3): δ(ppm) = 69.1
(C-5′′), 78.1 (C-4′′), 151.5
(C-2′). 21: [α]20
D = +7.7
(c 0.91, CHCl3), mp
49-52 °C.
C36H41BO4Si (576.60): Calcd C,
74.99; H, 7.17. Found C, 74.82; H, 7.26. 1H
NMR (500 MHz, CDCl3): δ(ppm) = 3.56
(dd, 2
J
4
′
a,4
′
b = 10.0 Hz, 3
J
3
′
,4
′
a = 7.2 Hz, 1 H, 4′-Ha),
3.79 (dd, 2
J
4
′
a,4
′
b = 10.0 Hz, 3
J
3
′
,4
′
b = 3.6 Hz, 1 H, 4′-Hb),
4.37 (mc, 1 H, 3′-H), 6.15 (dd, 3
J
1
′
,2
′ = 18.0 Hz, 4
J
1
′
,3
′ = 1.7 Hz, 1 H, 1′-H),
6.95 (dd, 3
J
1
′
,2
′ = 18.0 Hz, 3
J
2
′
,3
′ = 4.6 Hz, 2′-H). 13C
NMR (125 MHz, CDCl3): δ(ppm) = 66.6
(C-4′), 73.7 (C-3′), 96.0 (CPh2),
ca. 118 (br, C-1′), 153.1 (C-2′). 22: [α]D
20 = -70.4
(c 1.05, CHCl3), mp 66-70 °C.
C37H43BO4Si (590.63): Calcd C,
75.24; H, 7.34. Found C, 75.14; H, 7.45. 1H
NMR (500 MHz, CDCl3): δ(ppm) = 0.23
(mc, 1 H, 1′-H), 0.95 (mc, 1 H, 3′-Hcis),
1.08 (ddd, 3
J
2
′
,3
′
-
trans
= 7.8
Hz, 3
J
1
′
,3
′
-
trans
= 6.2
Hz,
3
J
3
′
-cis,3
′
-
trans
= 3.6
Hz, 1 H, 3′-H
trans
),
1.38 (mc, 1 H, 2′-H), 2.55 (d, 3
J
OH,1
′′ = 3.5
Hz, 1 H, OH), 3.16 (mc, 1
H, 1′′-H), 3.43 (dd, 2
J
2
′′
a,2
′′
b = 9.9 Hz, 3
J
1
′′
,2
′′
a = 7.4 Hz, 1 H, 2′′-Ha), 3.80
(dd, 2
J
2
′′
a,2
′′
b = 9.9 Hz, 3
J
1
′′
,2
′′
b = 3.4 Hz, 1 H, 2′′-Hb).
13C
NMR (125 MHz, CDCl3): δ(ppm) = 9.1
(C-3′), 20.4
(C-2′), 67.0 (C-2′′),
75.9 (C-1′′), 95.8 (CPh2).
<A NAME="RD25502ST-29">29</A>
Crisp GT.
Jiang Y.-L.
Pullman PJ.
De Savi C.
Tetrahedron
1997,
53:
17489
<A NAME="RD25502ST-30">30</A>
Baba Y.
Saha G.
Nakao S.
Iwata C.
Tanaka T.
Ibuka T.
Ohishi H.
Takemoto Y.
J.
Org. Chem.
2001,
66:
81