Synthesis 2003(1): 0030-0034
DOI: 10.1055/s-2003-36245
PAPER
© Georg Thieme Verlag Stuttgart · New York

The First Generation of Azulenyl-Lithium and -Magnesium: A Novel, Versatile Method of Introducing a Substituent at the 2-Position of an Azulene Skeleton

Kei Kurotobia, Hiroshi Tabataa, Masato Miyauchia, Rahman A. F. M. Mustafizura, Kouto Migitaa, Toshihiro Murafuji*a, Yoshikazu Sugihara*a, Hirotsugu Shimoyamab, Kunihide Fujimori b
a Department of Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi City 753-8512, Japan
Fax: +81(83)9335273; e-Mail: murafuji@po.cc.yamaguchi-u.ac.jp; e-Mail: sugihara@po.cc.yamaguchi-u.ac.jp;
b Department of Chemistry, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan
Further Information

Publication History

Received 20 August 2002
Publication Date:
18 December 2002 (online)

Abstract

1,3-Dihaloazulenes were effectively transformed into 2-substituted azulenes through lithiation at the 2-position by proton abstraction. Furthermore, 1,3-dichloro-2-iodoazulene was found to undergo iodine-lithium and -magnesium exchange to generate the corresponding azulenyl-lithium and -magnesium, respectively.

    References and Notes

  • For some syntheses of oligomers, see:
  • 1a Tour JM. Chem. Rev.  1996,  96:  537 
  • 1b Pearson DL. Tour JM. J. Org. Chem.  1997,  62:  1376 
  • 1c Nakanishi H. Sumi N. Aso Y. Otsubo T. J. Org. Chem.  1998,  63:  8632 
  • 2 Wheland GW. Mann DE. J. Chem. Phys.  1949,  17:  264 
  • 3 Hafner K. Org. Synth., Coll. Vol. 7   Wiley; New York: 1990.  p.15 
  • 4a Kurotobi K. Takakura K. Murafuji T. Sugihara Y. Synthesis  2001,  1346 
  • 4b For our recent related work, see: Kurotobi K. Tabata H. Miyauchi M. Murafuji T. Sugihara Y. Synthesis  2002,  1013 
  • 5 Nozoe T. Seto S. Matsumura S. Bull. Chem. Soc. Jpn.  1962,  35:  1990 
  • 8 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Zakrzewski VG. Montgomery JA. Stratmann RE. Burant JC. Dapprich S. Millam JM. Daniels AD. Kudin KN. Strain MC. Farkas O. Tomasi J. Barone V. Cossi M. Cammi R. Mennucci B. Pomelli C. Adamo C. Clifford S. Ochterski J. Petersson GA. Ayala PY. Cui Q. Morokuma K. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Cioslowski J. Ortiz JV. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Gomperts R. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Gonzalez C. Challacombe M. Gill PMW. Johnson BG. Chen W. Wong MW. Andres JL. Head-Gordon M. Replogle ES. Pople JA. Gaussian 98 (Revision A.6)   Gaussian, Inc.; Pittsburgh PA: 1998. 
  • 10 For the MO calculations of such an electronic configuration, see: Hoffmann R. Zeiss GD. Van Dine GW. J. Am. Chem. Soc.  1968,  90:  1485 
  • 11 Anderson AG. Nelson JA. Tazuma JJ. J. Am. Chem. Soc.  1953,  75:  4980 
  • 12 For addition of lithium dicyclohexylamide to azulene, see: McDonald RN. Petty HE. Wolfe NL. Paukstelis JV. J. Org. Chem.  1974,  39:  1877 
  • 13 For the generation of 5,6-azulyne from 5,6-dibromoazulene, see: Lu Y. Lemal DM. Jasinski JP. J. Am. Chem. Soc.  2000,  122:  2440 
  • 14 Smith PAS. Rowe CD. Bruner LB. J. Org. Chem.  1969,  34:  3430 
  • 15 Direct lithiation of 1,3-dichlorobenzene by butyllithium has been reported: Kress TH. Leanna MR. Synthesis  1988,  803 
  • 16 Soai K. Yokoyama S. Ookawa A. Synthesis  1987,  48 
  • 17 For the bromination of 1,3-bisethoxycarbonyl-2-aminoazulene at the 6-position, see: Nozoe T. Seto S. Matsumura S. Bull. Chem. Soc. Jpn.  1962,  35:  1990 
6

Shimoyama, H.; Ito, A.; Takeda, K.; Hamazaki, H.; Ota, A.; Fujimori K., In the Abstracts of the 29th Symposium on Structural Organic Chemistry; Saitama, Japan, September 20-22, 1999, p 310.

7

The single point energies of azulenyl anion and its biradical species were calculated by using the Gaussian 98 Revision A.6 program [8] at UHF/6-31G** level, based on the geometries optimized by semiempirical AM1 calculations.

9

The total energy of anion A was found to lie by about 11 kcal/mol above that of biradical B.