Planta Med 2003; 69(1): 56-62
DOI: 10.1055/s-2003-37038
Original Paper
Natural Product Chemistry
© Georg Thieme Verlag Stuttgart · New York

Isolation and Characterization of Anticomplementary β-Glucans from the Shoots of Bamboo Phyllostachys edulis

Mee-Hyang Kweon1 , Han-Joon Hwang1 , Ha-Chin Sung1
  • 1Graduate School of Biotechnology, Korea University, Seoul, Republic of Korea
Further Information

Publication History

Received: April 8, 2002

Accepted: September 7, 2002

Publication Date:
04 February 2003 (online)

Abstract

Bamboo, Phyllostachys edulis produces well known edible shoots in Asia. Immunostimulating anticomplementary (complement activating) substances have been recognized as a characteristic biological response modifier (BRM). In the present study, we isolated and characterized three anticomplementary β-glucans (BS-BGA, BS-BGB, and BS-BGC) from bamboo shoots. Hot-water extraction, DEAE-Toyopearl 650M-column chromatography, amylase digestion and concanavalin A adsorption, and Sephacryl S-100 HR column chromatography were applied to isolate the β-glucans. The average molecular masses of the β-glucans were estimated to be from 14,500 to 85,300 Da by HPSEC-MALLS-RI. All three β-glucans (0.1 - 1.0 mg/mL) activated the complement system via the alternative pathway, and could cleave human complement C3 under Ca2+-free gelatin veronal buffered saline. Among them, the largest molecule, BS-BGA was the most potent complement activator. Methylation analysis and NMR spectroscopy were used to achieve their structural characterization. They are all water-soluble and composed mainly of backbone structures of β-(1→3)-glucan with β-(1→4)-linked side chains varying in degree of branching. BS-BGA consisted of a higher proportion of 3-linked glucopyranosyl residues and a lower degree of branching than BS-BGB and BS-BGC. In particular, BS-BGA contained a small amount of O-acetyl groups at C-6 of the 3-linked glucopyranosyl residues. These data demonstrate that the structural characteristics including molecular size, degree of branching, and O-acetyl substitution are involved, at least in part, in their different anticomplementary activities.

References

  • 1 Franz G. Polysaccharides in pharmacy: Current applications and future concepts.  Planta Medica. 1989;  55 493-7
  • 2 Ross G R, Větvička V, Yan J, Xia Y, Větvičková J. Therapeutic intervention with complement and β-glucan in cancer.  Immunopharmacology. 1999;  42 61-74
  • 3 Estrada A, Yun C H, Van Kessel A, Li B, Hauta S, Laarveld B. Immunomodulatory activities of oat β-glucan in vitro and in vivo .  Microbiology and Immunology. 1997;  41 991-8
  • 4 Egwang T G, Befus A D. The role of complement in the induction and regulation of immune responses.  Immunology. 1984;  51 207-224
  • 5 Dempsey P W, Allison M E, Akkaraju S, Goodnow C C, Fearon D T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity.  Science. 1996;  271 348-50
  • 6 Kweon M H, Sung H C, Yang H C. Acidic heteroglycans with anti-complementary activity from the water extract of Pteridium aquilinum var. latiusculum .  Foods and Biotechnology (Seoul). 1994;  3 83-9
  • 7 Kweon M H, Lim W J, Yang H C, Sung H C. Characterization of two glucans activating an alternative complement pathway from the fruiting bodies of mushroom Pleurotus ostreatus .  Journal of Microbiology and Biotechnology. 2000;  10 267-71
  • 8 Min B S, Gao J J, Hatori M, Lee H K, Kim Y H. Anticomplementary activity of terpenoids from the spores of Ganoderma lucidum .  Planta Medica. 2001;  67 811-4
  • 9 Oh S R, Kinjo J, Shii Y, Ikeda T, Nohara T, Ahn K Y, Kim J H, Lee H K. Effects of triterpenoids from Pueraria lobata on immunohemolysis: β-glucuronic acid plays an active role in anticomplementary activity in vitro .  Planta Medica. 2000;  66 506-10
  • 10 Kiyohara H, Yamada H. Structure of an anticomplementary arabinogalactan from the root of Angelica acutiloba Kitagawa.  Carbohydrate Research. 1989;  193 173-92
  • 11 Yamada H, Nagai T, Cyong J C, Otsuka Y. Mode of complement activation by acidic heteroglycans from the leaves of Artemisia princes PAMP.  Chemical & Pharmaceutical Bulletin. 1991;  39 2077-81
  • 12 Yamada H, Ra K S, Kiyohara H, Cyong J C, Otsuka Y. Structural characterization of an anticomplementary pectic polysaccharide from the root of Bupleurum falcatum L.  Carbohydrate Research. 1989;  189 209-26
  • 13 Samuelsen A B. The traditional uses, chemical constituents and biological activities of Plantago major L. J.  Ethnopharmacology. 2000;  71 1-21
  • 14 Kweon M H, Kim H I, Sung H C, Yang H C. Core structure of the anti-complementary acidic polysaccahride (PA-IIa-1) from water extract of Pteridium aquilinum var. latiusculum .  Foods and Biotechnology (Seoul). 1994;  3 137-43
  • 15 Kaneko S, Ishi T, Matsunaga T. A boron-rhamnogalacturonan-II complex from bamboo shoot cell walls.  Phytochemistry. 1997;  44 243-8
  • 16 Bhatty R S, MacGregor A W, Rossnagel B G. Total and acid-soluble β-glucan content of hull-less barley and its relationship to acid-extract viscosity.  Cereal Chemistry. 1991;  68 221-7
  • 17 Platts-Mills T AE, Ishizaka K. Activation of the alternative pathway of human complement by rabbit cells.  Journal of Immunology. 1974;  113 348-58
  • 18 Bohn J A, Be Miller J N. (1→3)-β-D-Glucans as biological response modifiers.  Carbohydrate polymers. 1995;  28 1433-9
  • 19 Kitamura S, Hori T, Kurita K, Takeo K, Hara C, Itoh W, Tabata K, Elgseter A, Stokke B T. An antitumor, branched (1→3)- β-D-glucan from a water extract of fruiting bodies of Cryptoporus volvatus .  Carbohydrate Research. 1994;  263 111-21
  • 20 Olafsdottir E S, Ingólfsdottir K. Polysaccharides from lichens: Structural characteristics and biological activity.  Planta Medica. 2001;  67 199-208
  • 21 Kweon M H, Kim H I, Sung H C, Yang H C. Core structure of the anticomplementary acidic polysaccharide (PA-IIa-1) isolated from water extract of Pteridium aquilinum var. latiusculum .  Foods and Biotechnology (Seoul). 1994;  3 137-43
  • 22 Yamada H, Nagai T, Cyong J C, Otsuka Y. Relationship between chemical structure and activity potencies of complement by an acidic polysaccharide, Platnago-mucilage A from the seed of Plantago asiatic .  Carbohydrate research. 1986;  156 137-45
  • 23 Bock K, Pedersen C. Advanced in carbohydrate chemistry and biochemistry, 1. In: Tipson RS, Horton D, editors Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Vol. 41 Academic Press New York; 1983: 44-5
  • 24 Roubroeks J P, Mastromauro D I, Andersson R, Christensen B E, Amen P. Molecular weight, structure, and shape of oat (1→3),( 1→4)-β-D-glucan fractions obtained by enzymatic degradation with lichenase.  Biomacromolecules. 2000;  1 584-91

Prof. Dr. Ha-Chin Sung

Graduate School of Biotechnology

Korea University

5-1 ka Anam-dong

Sungbuk-ku

Seoul 136-701

Republic of Korea

Email: hcsung@korea.ac.kr

Fax: +82-02-927-9028