Abstract
The hydroxyethylene dipeptide isosteres l -682,679, l -684,414, l -685,434,
and l -685,458 were synthesized in a few
steps by a sequence involving an allyltrichlorostannane coupling
with an α-amino aldehyde, followed by hydroboration of
the corresponding 1,2-syn and 1,2-anti amino alcohols to give the diols,
lactonization under TPAP conditions, lactone opening, and peptide
coupling with the desired amine or dipeptide amide. The present
synthetic approach represents a practical entry to a large range
of other dipeptide isosteres.
Key words
amino aldehydes - HIV - peptides - total
synthesis - lactones
References
1a
Vacca JP.
Condra JH.
Drug Discov. Today
1997,
2:
261
1b
Steele FR.
Nature Med.
1996,
2:
257
1c
Huff JR.
J. Med. Chem.
1991,
34:
2305
1d
Prasad JVNV.
Rich DH.
Tetrahedron
Lett.
1990,
31:
1803
2
Wlodawer A.
Vondrasek J.
Annu. Rev. Biophys. Biomol. Struct.
1998,
27:
249
3
Babine RE.
Bender SL.
Chem. Rev.
1997,
97:
1359
4
Tomasselli AG.
Heinrikson RL.
Biochim. Biophys.
Acta
2000,
189
5 For a comparative quantitative structure-activity relationship
study on anti-HIV drugs, see: Garg R.
Gupta SP.
Gao H.
Babu MS.
Debnath AK.
Hansch C.
Chem. Rev.
1999,
99:
3525
6
Lyle TA.
Wiscount CM.
Guare JP.
Thompson WJ.
Anderson PS.
Darke PL.
Zugay JA.
Emini EA.
Schleif WA.
Quintero JC.
Dixion RAF.
Sigal IS.
Huff JR.
J.
Med. Chem.
1991,
34:
1228
7
Panchagnula R.
Thomas NS.
Int. J. Pharm.
2000,
201:
131
For the synthesis of analogues of l -685,434, see:
8a
Litera J.
Budesinsky M.
Urban J.
Soucek M.
Collect. Czech. Chem. Commun.
1998,
63:
231
8b
Litera J.
Weber J.
Krizova I.
Pichova I.
Konvalinka J.
Fusek M.
Soucek M.
Collect.
Czech. Chem. Commun.
1998,
63:
541
8c
Evans BE.
Rittle KE.
Homnick CF.
Springer JP.
Hirshfield J.
Veber DF.
J.
Org. Chem.
1985,
50:
4615
9
Thompson WJ.
Fitzgerald PMD.
Holloway MK.
Emini EA.
Darke PL.
McKeever BM.
Schleif WA.
Quintero JC.
Zugay JA.
Tucker TJ.
Schwering JE.
Homnick CF.
Nunberg J.
Springer JP.
Huff JR.
J. Med. Chem.
1992,
35:
1685
10 For the synthesis of analogues of l -682,679, see: de Solms SJ.
Giuliani EA.
Guare JP.
Vacca JP.
Sanders WM.
Graham SL.
Wiggins JM.
Darke PL.
Sigal IS.
Zugay JA.
Emini EA.
Schleif WA.
Quintero JC.
Anderson PS.
Huff JR.
J. Med. Chem.
1991,
34:
2852
11
Evans J.
Chem.
Brit.
2001,
April:
47
12
Pesti JA.
Chorvat RJ.
Huhn GF.
Chem. Innovation
2000,
October:
28
13
de Clercq E.
Pure
Appl. Chem.
2001,
73:
55
14
Ghosh AK.
Shin D.
Mathivanan P.
Chem.
Commun.
1999,
1025
15
Li YM.
Xu M.
Lai MT.
Huang Q.
Castro JL.
DiMuzio-Mower J.
Harrison T.
Lellis C.
Nadin A.
Neduvelil JG.
Register RB.
Sardana MK.
Shearman MS.
Smith AL.
Shi XP.
Yin KC.
Shafer JA.
Gardell SJ.
Nature (London)
2000,
405:
689
16
Li YM.
Lai MT.
Xu M.
Huang Q.
DiMuzio-Mower J.
Sardana MK.
Shi XP.
Yin KC.
Shafer JA.
Gardell SJ.
Proc. Natl. Acad.
Sci. U.S.A.
2000,
97:
6138
17
Shearman MS.
Beher D.
Clarke EE.
Lewis HD.
Harrison T.
Hunt P.
Nadin A.
Smith AL.
Stevenson G.
Castro JL.
Biochemistry
2000,
39:
8698
18
Nadin A.
López JMS.
Neduvelil JG.
Thomas SR.
Tetrahedron
2001,
57:
1861
19
Dias LC.
Giacomini R.
J. Braz. Chem. Soc.
1998,
9:
357 ; Chem. Abstr. 1999 , 130 , 66177
(a) Evans DA.
Coleman PJ.
Dias LC.
Angew
Chem., Int. Ed. Engl.
1997,
36:
2738
(b) Evans DA.
Trotter BW.
Cote B.
Coleman PJ.
Dias LC.
Tyler AN.
Angew Chem., Int. Ed.
Engl.
1997,
36:
2744
20
Dias LC.
Giacomini R.
Tetrahedron Lett.
1998,
39:
5343
21
Dias LC.
Meira PRR.
Ferreira E.
Org. Lett.
1999,
1:
1335
22
Dias LC.
Meira PRR.
Synlett
2000,
37
23
Dias LC.
Ferreira E.
Tetrahedron Lett.
2001,
42:
7159
24
Dias LC.
Ferreira AA.
Diaz G.
Synlett
2002,
1845
25
Liu HJ.
Shia KS.
Shang X.
Zhu BY.
Tetrahedron
1999,
55:
3803
27a
Narayanan BA.
Bunnelle WH.
Tetrahedron Lett.
1987,
28:
6261
27b
Bunnelle WH.
Narayanan BA.
Org. Synth.
1990,
69:
89
28 (a) Fehrentz JA.
Castro B.
Synthesis
1983,
676
28 (b) Saari WS.
Fisher TE.
Synthesis
1990,
453
These aldehydes should be freshly prepared before
use. Attempts to purify aldehydes 13a -c by silica gel chromatography resulted
in partial racemization. Since the diastereoselectivity of the reactions
of these aldehydes with allylsilanes depends on their diastereomeric
purity, crude aldehydes were used in all of the studies described
in the text
For optical stability studies of N -protected α-amino aldehydes,
see:
29a
Ito A.
Takahashi R.
Baba Y.
Chem Pharm.
Bull.
1975,
23:
3081
29b
Garner P.
Park JM.
J. Org. Chem.
1987,
52:
2361
29c
Jurczak J.
Golebiowski A.
Chem. Rev.
1989,
89:
149
29d
Myers AG.
Zhong BY.
Movassaghi M.
Kung DW.
Lanman BA.
Kwon S.
Tetrahedron
Lett.
2000,
41:
1359
30 For a review of the synthesis of
vicinal amino alcohols, see: Bergmeier SC.
Tetrahedron
2000,
56:
2561
31 For a review about recent advances
in the synthesis of peptides, see: Nájera C.
Synlett
2002,
1388
32 For an interesting paper dealing
with the question of configurational stability at the stereogenic
center next to the aldehyde function in dipeptide aldehydes, see: Reetz MT.
Griebenow N.
Liebigs
Ann. Chem.
1996,
335
33
Benedetti F.
Miertus S.
Norbedo S.
Tossi A.
Zlatoidzky P.
J.
Org. Chem.
1997,
62:
9348
34 Attempts to use allylsilanes 6 and 8 with other
Lewis acids (TiCl4 , BF3 ·OEt2 )
as well as attempts to mix these allylsilanes and the aldehydes 13a -c before
addition of SnCl4 led to poor yields, loss of the Boc
protecting group, and recovered starting material.
35 The influence of an intramolecular
hydrogen bond in the stereoselection of α-amino carbonyl
compounds has been described: Pace RD.
Kabalka GW.
J. Org. Chem.
1995,
60:
4838
36
Hoffman RV.
Maslouch N.
Cervantes-Lee F.
J.
Org. Chem.
2002,
67:
1045
37a
Mitsunobu O.
Synthesis
1981.
p.1
37b
Dodge JA.
Trujillo JI.
Presnell M.
J. Org. Chem.
1994,
59:
234
37c
Martin SF.
Dodge JA.
Tetrahedron
Lett.
1991,
32:
3017
38a
D’Aniello F.
Mann A.
Mattii D.
Taddei M.
J.
Org. Chem.
1994,
59:
3762
38b
Ciapetti P.
Taddei M.
Ulivi P.
Tetrahedron
Lett.
1994,
35:
3183
38c
Ciapetti P.
Falorni M.
Taddei M.
Tetrahedron
1996,
52:
7379
39 This compound has been prepared
earlier by Taddei and co-workers. The 1 H NMR
data for our compound is consistent with the described 1 H
NMR data reported by Taddei et al., but the 13 C
NMR data are not. According to Taddei et al., there are no chemical
shifts between 60 and 80 ppm, and we observed 2 signals, at 65 and
75 ppm, attributed to CHN and CH OH, respectively,
as expected: D’Aniello F.
Taddei M.
J. Org. Chem.
1992,
57:
5247
40 Alcohols 27 and 28 have
been prepared previously by Taddei and co-workers, but our 13 C
NMR data are not consistent with the described data reported in
that work, although consistent with the expected structure. See
Ref.
[40 ]
41a
Ley SV.
Norman J.
Griffith WP.
Marsden SP.
Synthesis
1994,
639
41b
Bloch R.
Brillet C.
Synlett
1991,
829
For other synthesis of these lactones,
see:
42a
Ghosh AK.
Fidanze S.
J. Org.
Chem.
1998,
63:
6146
42b
Ghosh AK.
McKee SP.
Thompson WJ.
Darke PL.
Zugay JC.
J. Org. Chem.
1993,
58:
1025
42c
Pégorier L.
Larchevêque M.
Tetrahedron
Lett.
1995,
36:
2753
42d See also Ref.
[8c ]
43a
Dess DB.
Martin JC.
J.
Am. Chem. Soc.
1991,
113:
7277
43b
Dess DB.
Martin JC.
J.
Org. Chem.
1983,
48:
4155
43c
Ireland RE.
Liu LB.
J.
Org. Chem.
1993,
58:
2899
44
Heathcock CH.
Pirrung MC.
Sohn JE.
J. Org. Chem.
1979,
44:
4294
45
Nadin A.
Owens AP.
Castro JL.
Harrison T.
Shearman MS.
Bioorg. Med. Chem. Lett.
2003,
13:
37
47 After re-examining our original 13 C
NMR spectrum of l -685-458 (3 )
we observed that in our first publication in Synlett (see
Ref.
[25 ]
of this manuscript)
we had mistakenly referenced the central line of the residual DMSO
peak at 41.9 and not 39.7, as expected.