Plant Biol (Stuttg) 2003; 5(1): 50-58
DOI: 10.1055/s-2003-37984
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Unique Tissue-Specific Cell Cycle in Physcomitrella

G. Schween 1 , G. Gorr 2 , A. Hohe 3 , R. Reski 1
  • 1 University of Freiburg, Plant Biotechnology, Schänzlestraße 1, 79104 Freiburg, Germany
  • 2 Present address: greenovation Biotech GmbH, Boetzinger Straße 29 b, 79111 Freiburg, Germany
  • 3 Present address: BioPlanta GmbH, Benndorfer Landstraße 2, 04509 Delitzsch, Germany
Further Information

Publication History

Received: November 4, 2002

Accepted: January 8, 2003

Publication Date:
18 March 2003 (online)

Abstract

The moss Physcomitrella patens (Hedw.) B.S.G. is a novel tool in plant functional genomics as it has an inimitable high gene targeting efficiency facilitating the establishment of gene/function relationships.

Here we report, based on flow cytrometric (FCM) data, that the basic nuclear DNA content per cell of Physcomitrella is 0.53 pg, equating to a genome size of 1 C = 511 Mbp. Furthermore, we describe a unique tissue-specific cell cycle change in this plant. Young plants consisting of only one cell type (chloronema) displayed one single peak of fluorescence in FCM analyses. As soon as the second cell type (caulonema) developed from chloronema, a second peak of fluorescence at half the intensity of the previous one became detectable, indicating that caulonema cells were predominantly at the G1/S transition, whereas chloronema cells were mainly accumulating at the G2/M transition. This conclusion was validated by further evidence: i) The addition of ammonium tartrate arrested Physcomitrella in the chloronema state and in G2/M. ii) Two different developmental mutants, known to be arrested in the chloronema/caulonema transition, remained in G2/M, regardless of age and treatment. iii) The addition of auxin or cytokinin induced the formation of caulonema, as well as decreasing the amount of cells in G2/M phase. Additionally, plant growth regulators promoted endopolyploidisation.

Thus, cell cycle and cell differentiation are closely linked in Physcomitrella and effects of plant hormones and environmental factors on both processes can be analysed in a straight forward way. We speculate that this unique tissue-specific cell cycle arrest may be the reason for the uniquely high rate of homologous recombination found in the Physcomitrella nuclear DNA.

Abbreviations

2iP: 6-(γ,γ-Dimethylallylamino)purine

DAP I: 4′,6-Diamidino-2-phenylindole

FCM: flow cytometry

HU: hydroxyurea

IAA: indoleacetic acid

NAA: naphthaleneacetic acid

Mbp: mega base pairs

PI: propidium iodide

References

  • 01 Aducci,  P.,, Marra,  M.,, Fogliano,  V.,, and Fullone,  M. R.. (1995);  Fusicoccin receptors: perception and transduction of the fusicoccin signal.  Journal of Experimental Botany . 46 1463-1478
  • 02 Arumuganathan,  K., and Earle,  E. D.. (1991);  Nuclear DNA content of some important plant species.  Plant Molecular Biology Reporter. 9 208-218
  • 03 Ashton,  N. W., and Cove,  D. J.. (1977);  The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss Physcomitrella patens. .  Molecular and General Genetics. 154 87-95
  • 04 Ashton,  N. W.,, Grimsley,  N. H.,, and Cove,  D. J.. (1979);  Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants.  Planta. 144 427-435
  • 05 Beeckmann,  T.,, Burssens,  S.,, and Inzé,  D.. (2001);  The peri-cell-cycle in Arabidopsis.  Journal of Experimental Botany. 52 403-411
  • 06 Bennett,  M. D., and Leitch,  I. J.. (1995);  Nuclear DNA amounts in angiosperms.  Annals of Botany. 76 113-176
  • 07 Bopp,  M.. (1990) Hormones of the protonema. Bryophyte development: physiology and biochemistry. Chopra, R. N. and Bhatla, S. C., eds. Boca Raton; CRC Press pp. 55-78
  • 08 Cao,  Y.,, Glass,  A. D. M.,, and Crawford,  N. M.. (1993);  Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2. .  Plant Physiology. 102 983-989
  • 09 Cebolla,  A.,, Vinardell,  J. M.,, Kiss,  E.,, Oláh,  B.,, Roudier,  F.,, Kondorosi,  A.,, and Kondorosi,  E.. (1999);  The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants.  EMBO Journal. 18 4476-4484
  • 10 Cove,  D. J.. (1992) Regulation of development in the moss, Physcomitrella patens. . Development. The molecular genetic approach. Russo, V. E. A., Brody, S., Cove, D., and Ottolenghi, S., eds. Berlin; Springer-Verlag pp. 179-193
  • 11 den Boer,  B. G. W., and Murray,  J. A. H.. (2000);  Triggering the cell cycle in plants.  Trends in Cell Biology. 10 245-250
  • 12 Dolezel,  J.,, Sgorbati,  S.,, and Lucretti,  S.. (1992);  Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants.  Physiologia Plantarum. 85 625-631
  • 13 Donnelly,  P. M.,, Bonetta,  D.,, Tsukaya,  H.,, Dengler,  R. E.,, and Dengler,  N. G.. (1999);  Cell cycling and cell enlargement in developing leaves of Arabidopsis.  Developmental Biology. 215 407-419
  • 14 Egener,  T.,, Granado,  J.,, Guitton,  M.-C.,, Hohe,  A.,, Holtorf,  H.,, Lucht,  J. M.,, Rensing,  S.,, Schlink,  K.,, Schulte,  J.,, Schween,  G.,, Zimmermann,  S.,, Duwenig,  E.,, Rak,  B.,, and Reski,  R.. (2002);  High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.  BMC Plant Biology. 2 6
  • 15 Foucher,  F., and Kondorosi,  E.. (2000);  Cell cycle regulation in the course of nodule organogenesis in Medicago. .  Plant Molecular Biology. 43 773-786
  • 16 Fowler,  M. R.,, Eyre,  S.,, Scott,  N. W.,, Slater,  A.,, and Elliott,  M. C.. (1998);  The plant cell in context.  Molecular Biotechnology. 10 123-153
  • 17 Girke,  T.,, Schmidt,  H.,, Zähringer,  U.,, Reski,  R.,, and Heinz,  E.. (1998);  Identification of a novel Δ6-acryl-group desaturase by targeted gene disruption in Physcomitrella patens. .  Plant J.. 15 39-48
  • 18 Granier,  C., and Tardieu,  F.. (1998);  Spatial and temporal analysis of expansion and cell cycle in sunflower leaves.  Plant Physiology. 116 991-1001
  • 19 Greilhuber,  J., and Ebert,  I.. (1994);  Genome size variation in Pisum sativum. .  Genome. 37 646-655
  • 20 Hartwell,  L. H.,, Culotti,  J.,, and Reid,  B.. (1970);  Genetic control of cell division in yeast. I. Detection of mutants.  Proceedings of the National Academy of Science (USA). 66 352-359
  • 21 Hohe,  A., and Reski,  R.. (2002);  Optimisation of a bioreactor culture of the moss Physcomitrella patens for mass production of protoplasts.  Plant Science. 163 69-74
  • 22 Hohe,  A.,, Decker,  E. L.,, Gorr,  G.,, Schween,  G.,, and Reski,  R.. (2002);  Tight control of growth and cell differentiation in photoautotrophically growing moss (Physcomitrella patens) bioreactor cultures.  Plant Cell Reports. 20 1135-1140
  • 23 Holtorf,  H.,, Guitton,  M.-C.,, and Reski,  R.. (2002);  Plant functional genomics.  Naturwissenschaften. 89 235-249
  • 24 Jenkins,  G. I., and Cove,  D. J.. (1983);  Light requirements for regeneration of protoplasts of the moss Physcomitrella patens. .  Planta. 157 39-45
  • 25 Johnston,  J. S.,, Bennett,  M.,, Rayburn,  A. L.,, Galbraith,  D. W.,, and Price,  H. J.. (1999);  Reference standards for determination of DNA content of plant nuclei.  American Journal of Botany. 86 609-613
  • 26 Johri,  M. M., and Desai,  S.. (1973);  Auxin regulation of caulonema formation in moss protonema.  Nature New Biology. 245 223-224
  • 27 Joubès,  J., and Chevalier,  C.. (2000);  Endoreduplication in higher plants.  Plant Molecular Biology. 43 735-745
  • 28 Knoop,  B.. (1978);  Multiple DNA contents in the haploid protonema of the moss Funaria hygrometrica Sibth.  Protoplasma. 94 307-314
  • 29 Lagunes-Espinoza,  L. C.,, Huyghe,  C.,, Bousseau,  D.,, Barre,  P.,, and Papineau,  J.. (2000);  Endoreduplication occurs during pod wall development in temperate grain legumes.  Annals of Botany. 86 185-190
  • 30 Leutwiler,  L. S.,, Hough-Evans,  B. R.,, and Meyerowitz,  E. M.. (1984);  The DNA of Arabidopsis thaliana. .  Molecular and General Genetics. 194 15-23
  • 31 Marie,  D., and Brown,  S. C.. (1993);  A cytometric exercise in plant DNA histograms, with 2C values for 70 species.  Biology of the Cell. 78 41-51
  • 32 Matsubayashi,  Y., and Sakagami,  Y.. (1998);  Effects of the medium ammonium-nitrate ratio on competence for asparagus cell division induced by phytosulfokine-α.  Plant Cell Reports. 17 368-372
  • 33 Murashige,  T., and Skoog,  F.. (1962);  A revised medium for rapid growth and bioassays with tobacco tissue cultures.  Physiologia Plantarum. 15 473-497
  • 34 Nagl,  W., and Treviranus,  A.. (1995);  A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes).  Botanica Acta. 108 403-406
  • 35 Nishiyama,  T.,, Hiwatashi,  Y.,, Sakakibara,  K.,, Kato,  M.,, and Hasebe,  M.. (2000);  Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis.  DNA Research. 7 9-17
  • 36 Planchais,  S.,, Glab,  N.,, Inzé,  D.,, and Bergounioux,  C.. (2000);  Chemical inhibitors: a tool for plant cell cycle studies.  FEBS Letters. 476 78-83
  • 37 Price,  H. J., and Johnston,  J. S.. (1996) Analysis of plant DNA content by feulgen microspectrophotometry and flow cytometry. Methods of genome analysis in plants. Jauhar, P. P., ed. Boca Raton; CRC press pp. 115-132
  • 38 Ray,  A., and Langer,  M.. (2002);  Homologous recombination: ends as the means.  Trends in Plant Science. 7 435-440
  • 39 Rensing,  S. A.,, Rombauts,  S.,, Van de Peer,  Y.,, and Reski,  R.. (2002);  Moss transcriptome and beyond.  Trends in Plant Science. 7 in press
  • 40 Reski,  R.. (1998);  Development, genetics and molecular biology of mosses.  Botanica Acta. 111 1-15
  • 41 Reski,  R., and Abel,  W. O.. (1985);  Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine.  Planta. 165 354-358
  • 42 Reski,  R.,, Faust,  M.,, Wang,  X.-H.,, Wehe,  M.,, and Abel,  W. O.. (1994);  Genome analysis of the moss Physcomitrella patens (Hedw.) B.S.G.  Molecular and General Genetics. 244 352-359
  • 43 Reutter,  K.,, Atzorn,  R.,, Hadeler,  B.,, Schmülling,  T.,, and Reski,  R.. (1998);  Expression of the bacterial ipt gene in Physcomitrella reduces mutations in budding and in plastid division.  Planta. 206 196-203
  • 44 Rother,  S.,, Hadeler,  B.,, Orsini,  J. M.,, Abel,  W. O.,, and Reski,  R.. (1994);  Fate of a mutant macrochloroplast in somatic hybrids.  Journal of Plant Physiology. 143 72-77
  • 45 Schaefer,  D.. (2001);  Gene targeting in Physcomitrella patens. .  Current Opinion in Plant Science. 4 143-150
  • 46 Schaefer,  D., and Zryd,  J.-P.. (1997);  Efficient gene targeting in the moss Physcomitrella patens. .  The Plant Journal. 11 1195-1206
  • 47 Stals,  H., and Inzé,  D.. (2001);  When plant cells decide to divide.  Trends in Plant Science. 6 359-364
  • 48 Strepp,  R.,, Scholz,  S.,, Kruse,  S.,, Speth,  V.,, and Reski,  R.. (1998);  Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin.  Proceedings of the National Academy of Science (USA). 95 4368-4373
  • 49 Takata,  M.,, Sasaki,  M. S.,, Sonoda,  E.,, Morrison,  C.,, Hashimoto,  M.,, Utsumi,  H.,, Yamaguchi-Iwai,  Y.,, Shinohara,  A.,, and Takeda,  S.. (1998);  Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells.  EMBO Journal. 17 5497-5508
  • 50 Terada,  R.,, Urawa,  H.,, Inagaki,  Y.,, Tsugane,  K.,, and Iida,  S.. (2002);  Efficient gene targeting by homologous recombination in rice.  Nature Biotechnology. 20 1030-1034
  • 51 Ulrich,  I., and Ulrich,  W.. (1991);  High-resolution flow cytometry of nuclear DNA in higher plants.  Protoplasma. 165 212-215

R. Reski

University of Freiburg
Plant Biotechnology

Schänzlestraße 1
79104 Freiburg
Germany

Email: ralf.reski@biologie.uni-freiburg.de

URL: http://www.plant-biotech.net

Section Editor: H. Rennenberg

    >