Subscribe to RSS
DOI: 10.1055/s-2003-38076
Organofluorine Compounds and Fluorinating Agents; 29: [1] Stereoselective Synthesis and Reactivity of 2-Chlorodifluoromethyl-Substituted Monosaccharides
Publication History
Publication Date:
21 March 2003 (online)
Abstract
Chlorodifluoromethyl groups were introduced into the 2-position of the glycals 1, 5, 8, and 11 by dithionite-mediated addition of CF2ClBr. The reaction proceeded stereoselectively, i.e. the CF2Cl-group is always found trans to the neighbouring substituent at C-3 in the products. Because the primarily formed glycosyl bromides hydrolyse easily, the corresponding 2-chlorodifluoromethyl-2-deoxypyranoses 3, 6, 9, and 12 were isolated. Only 3,4,6-tri-O-acetyl-2-chlorodifluoromethyl-2-deoxy-d-glucopyranosyl bromide (2) was stable enough for chromatographic separation. The unprotected anomeric pyranoses 3, 6, 9, and 12 were acetylated by acetic anhydride/pyridine yielding the 1-O-acetyl derivatives 4, 7, 10, and 13. These compounds are suitable glycosyl donors, just as the anomeric phenyl thioglycosides 16 and 17 generated from 1,3,4-tri-O-acetyl-2-chlorodifluoromethyl-2-deoxy-d-arabinopyranside (7) and thiophenol (BF3-catalysis). Furthermore, the reactivity of glucosyl bromide 2, 6-deoxy-l-glucose derivative 13 and thioglycosides 16, 17 was investigated. On treatment of glucosyl bromide 2 with pyridine, the 2-chlorodifluoromethyl substituted glycal 14 is formed as the result of HBr elimination. Furthermore, the chlorodifluoromethyl group of compounds 14 and 16 was converted into a methoxycarbonyl group by refluxing in methanolic sodium methoxide (products 15 and 19, respectively). Finally, the thioglycosides 16 and 17 were subsequently deacetylated by CsF on alumina (yielding the dihydroxy derivatives 18 and 20) and acetalized with chloral/DCC (18 forming acetal 21 and carbonate 22) and acetone (20 forming acetal 23), respectively. X-ray analyses are given for the 1-O-acetate 4 and the thioglycosides 21 and 24.
Key words
carbohydrates - glycals - difluoromethylation - radical addition reactions - eliminations - acetals
Part 28: Schwäbisch, D.; Miethchen, R. J. Fluorine Chem. 2002, in press.
- 2
Filler R.Kobayashi Y.Yagupolskii LM. In Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications Elsevier; Amsterdam: 1993. - 3
Fluoroorganic
Chemistry: Synthetic Challenges and Biomedical Rewards, Tetrahedron
Symposia 58
Vol. 52:
Resnati G.Soloshnok VA. Tetrahedron; Pergamon: 1996. p.1-330 - 4
Welch JT.Eswarakrishnan S. Fluorine in Bioorganic Chemistry Wiley; New York: 1991. - 5
Organofluorine
Compounds-Chemistry and Applications
Yamamoto H. Springer-Verlag; Berlin: 2000. - 6
Organofluorine
Compounds. Houben-Weyl, Methods of Organic Chemistry
E10a-c:
Baasner B.Hagemann H.Tatlow JC. Thieme Verlag; Stuttgart: 1999/2000. - 7
Special Issue on Fluorosugars.
Carbohydrate Research
Vol. 327:
Miethchen R.Defaye J. Elsevier; Amsterdam: 2000. p.1-218 - 8
Brace NO. J. Fluorine Chem. 1999, 93: 1 - 9
Tozer MJ.Herpin T. Tetrahedron 1996, 52: 8619 ; and references cited therein - 10
Burkholder CR.Dolbier WR.Medebielle M. J. Fluorine Chem. 2001, 109: 39 ; and references cited therein - 11
Chen QY. Israel J. Chem. 1999, 39: 172 - 12
Ding Z.Xia S.Ji X.Yang H.Tao F.Wang Q. Synthesis 2002, 349 - 13
Rico I.Cantacuzene D.Wakselman C. Tetrahedron Lett. 1981, 22: 3405 - 14
Huang W.-Y. J. Fluorine Chem. 1992, 58: 1 - 15
Huang W.-Y.Xie Y. Chinese J. Chem. 1991, 9: 351 ; Chem. Abstr. 1992, 116, 106596 - 16
Wu FH.Huang BN.Lu L.Huang W.-Y. J. Fluorine Chem. 1996, 80: 91 - 17
Huang W.-Y.Wu F.-H. Israel J. Chem. 1999, 39: 167 - 18
Rong G.Keese R. Tetrahedron Lett. 1990, 31: 5615 - 19
Plenkiewicz H.Dmowski W.Lipinski M. J. Fluorine Chem. 2001, 111: 227 - 20
Zur C.Miethchen R. Eur. J. Org. Chem. 1998, 531 - 21
Miethchen R.Hein M.Reinke H. Eur. J. Org. Chem. 1998, 919 - 22
Platier-Royon R.Portella C. Carbohydr. Res. 2000, 327: 119 - 23
Monosaccharides.
Their Chemistry and Their Roles in Natural Products
Collins P.Ferrier R. Wiley; New York: 1995. p.317-319 - 24
Lemieux RU.Lineback DR. Can. J. Chem. 1965, 43: 94 - 25
Hughes NA. Carbohydr. Res. 1972, 25: 242 - 26
Zemplén G.Gerecs A.Hadácsy I. Ber. Dtsch. Chem. Ges. 1936, 69: 1827 - 27
Ando T.Yamawaki J.Kawate T.Sumi S.Hanafusa T. Bull. Chem. Soc. Jpn. 1982, 55: 2504 - 29
Miethchen R.Sowa Chr.Frank M.Michalik M.Reinke H. Carbohydr. Res. 2002, 337: 1 ; and references cited therein - 30
Sowa Chr.Miethchen R.Reinke H. J. Carbohydr. Chem. 2002, 21: 293 - 31
Zur C.Miller AO.Miethchen R. J. Fluorine Chem. 1998, 90: 67 - 33
Sheldrick GM. University of Göttingen; Göttingen: 1986. - 34
Cremer D.Pople JA. J. Am. Chem. Soc. 1975, 97: 1354 - 35
Roth W.Pigman W. Methods Carbohydr. Chem. 1963, 2: 407
References
Part 28: Schwäbisch, D.; Miethchen, R. J. Fluorine Chem. 2002, in press.
28Treatment of thioglycoside 16 with Zemplén reagent at r.t. for 12 h gave a mixture of 18 and 19 (ratio, ca. 3:1).
32Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 198524-198526. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk) or via www.ccdc.cam.ac.uk/conts/retrieving.html.