Abstract
Evidence from basic and clinical research suggests that hyperactivity of central corticotropin-releasing
hormone (CRH) circuits contributes to causality and course of affective disorders.
Therefore, CRH receptor antagonists have attracted attention as potential therapeutics.
We could previously show that the novel high-affinity non-peptide CRH1 receptor antagonist R121919 significantly inhibits stress-induced corticotropin release
and displays anxiolytic effects in rats selectively bred for high anxiety-related
behavior. These animals are characterized by their innate hyper-reactivity of the
hypothalamic-pituitary-adrenocortical system linked to an increased emotionality and
therefore are suitable for the evaluation of CRH1 receptor antagonists. Here we show that in addition to its effects on anxiety-related
behavior and corticotropin secretion, R121919 attenuates the stress-induced release
of corticosterone, prolactin, and oxytocin. Moreover, the decrease in plasma testosterone
following exposure to stress is abolished by R121919. Our data indicate that antagonism
of CRH1 receptors may prevent stress-associated endocrine alterations.
Key words
Antidepressant - stress - depression - corticotropin-releasing hormone - corticotropin-releasing
factor - corticotropin-releasing hormone receptor antagonist - testosterone - prolactin
- oxytocin
References
1
Akema T, Chiba A, Oshida M, Kimura F, Toyoda J.
Permissive role of corticotropin-releasing factor in the acute stress-induced prolactin
release in female rats.
Neurosci Let.
1995;
198
146-148
2
Bruhn T O, Sutton S W, Plotsky P M, Vale W W.
Central administration of corticotropin-releasing factor modulates oxytocin secretion
in the rat.
Endocrinology.
1986;
119
1558-1563
3
Chatterton R T, Vogelsong K M, Lu Y C, Hudgens G A.
Hormonal responses to psychological stress in men preparing for skydiving.
J Clin Endocrinol Metab.
1997;
82
2503-2509
4
Gerra G, Zaimovic A, Zambelli U, Timpano M, Reali N, Bernasconi S, Brambilla F.
Neuroendocrine response to psychological stress in adolescents with anxiety disorder.
Neuropsychobiology.
2000;
42
82-92
5
Heinrich N, Meyer M R, Furkert J, Sasse A, Beyermann M, Bönigk W, Berger H.
Corticotropin-releasing factor (CRF) agonists stimulate testosterone production in
mouse leydig cells through CRF receptor-1.
Endocrinology.
1998;
139
651-658
6
Heinrichs S C, Lapsansky J, Lovenberg T W, De Souza E B, Chalmers D T.
Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like
behavior.
Reg Peptides.
1997;
71
15-21
7
Henniger M SH, Ohl F, Hölter S M, Weissenbacher P, Toschi N, Lörscher P, Wigger A,
Spanagel R, Landgraf R.
Unconditioned anxiety and social behaviour in two rat lines selectively bred for high
and low anxiety-related behaviour.
Behav Brain Res.
2000;
111
53-163
8
Holsboer F.
The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to
treat depression and anxiety.
J Psychiatr Res.
1999;
33
181-214
9
Imaki T, Katsumata H, Miyata M, Naruse M, Imaki J, Minami S.
Expression of corticotropin releasing factor (CRF), urocortin and CRF type 1 receptors
in hypothalamic-hypophyseal systems under osmotic stimulation.
J Neuroendocrinol.
2001;
13
328-338
10
Keck M E, Holsboer F.
Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in
affective disorders.
Peptides.
2001;
22
835-844
11
Keck M E, Hatzinger M, Wotjak C T, Holsboer F, Landgraf R, Neumann I D.
Ageing alters intrahypothalamic release patterns of vasopressin and oxytocin in rats.
Eur J Neurosci.
2000;
12
1487-1494
12
Keck M E, Welt T, Wigger A, Renner U, Engelmann M, Holsboer F, Landgraf R.
The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on innate emotionality
in rats.
Eur J Neurosci.
2001;
13
373-380
13
Keck M E, Wigger A, Welt T, Müller M B, Gesing A, Reul J MHM, Holsboer F, Landgraf R,
Neumann I D.
Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious
rats: implications for pathogenesis of affective disorders.
Neuropsychopharmacology.
2002;
26
94-105
14
Landgraf R.
Neuropeptides and anxiety-related behavior.
Endocrine J.
2001;
48
517-533
15
Lang R E, Heil J WE, Ganten D, Hermann K, Unger T, Rascher W.
Oxytocin unlike vasopressin is a stress hormone in the rat.
Neuroendocrinology.
1983;
37
314-316
16
Liebsch G, Landgraf R, Engelmann M, Lörscher P, Holsboer F.
Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense
oligonucleotides into the rat brain.
J Psychiatr Res.
1999;
33
153-63
17
Liebsch G, Landgraf R, Gerstberger R, Probst J C, Wotjak C T, Engelmann M, Holsboer F,
Montkowski A.
Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central
nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats.
Reg Peptides.
1995;
59
229-39
18
Liebsch G, Montkowski A, Holsboer F, Landgraf R.
Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related
behaviour.
Behav Brain Res.
1998;
94
301-310
19
Liebsch G, Montkowski A, Holsboer F, Landgraf R.
Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity
to diazepam in two Wistar rat lines selectively bred for high and low anxiety-related
behavior.
Neuropsychopharmacology.
1998;
19
81-396
20
Lovenberg T W, Liaw C W, Grigoriadis D E, Clevenger W, Chalmers D T, De Souza E B,
Oltersdorf T.
Cloning and characterization of a functionally distinct corticotropin-releasing factor
receptor subtype.
Proc Acad Natl Sci USA.
1995;
92
36-40
21
Maric D, Kostic T, Kovacevic R.
Effects of acute and chronic immobilization stress on rat Leydig cell steroidogenesis.
J Steroid Biochem Mol Biol.
1996;
58
352-355
22
Meyerhoff J L, Mougey E H, Kant G J.
Paraventricular lesions abolish the stress-induced rise in pituitary cyclic adenosine
monophosphate and attenuate the increases in plasma levels of proopiomelanocortin-derived
peptides and prolactin.
Neuroendocrinology.
1987;
46
222-230
23
Morel G, Enjalbert A, Proulx L, Pelletier G, Barden N, Grossard F, Dubois P M.
Effect of corticotropin-releasing factor on the release and synthesis of prolactin.
Neuroendocrinology.
1989;
49
669-675
24
Morgan C A, Wang S, Mason J, Southwick S M, Fox P, Hazlett G, Charney D S, Greefield G.
Hormone profiles in humans experiencing military survival training.
Biol Psychiatry.
2000;
47
891-901
25
Müller M B, Keck M E.
Genetically engineered mice for studies of stress-related clinical conditions.
J Psychiatr Res.
2002;
36
53-76
26
Müller M B, Preil J, Renner U, Zimmermann S, Kresse A E, Stalla G K, Keck M E, Holsboer F,
Wurst W.
Expression of CRHR1 and CRHR2 in mouse pituitary and adrenal gland: implications for
HPA system regulation.
Endocrinology.
2001;
142
4150-4153
27
Neumann I D, Wigger A, Torner L, Holsboer F, Landgraf R.
Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal
axis in male and female rats: partial action within the paraventricular nucleus.
J Neuroendocrinol.
2000;
12
235-243
28
Ohl F, Toschi N, Wigger A, Henniger M SH, Landgraf R.
Dimensions of emotionality in a rat model of innate anxiety.
Behav Neurosci.
2001;
115
429-436
29
Pellow S, Chopin P, File S E, Briley M.
Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety
in the rat.
J Neurosci Methods.
1985;
14
149-167
30
Perrin M H, Donaldson C; Chen R, Blount A, Berggren T, Bilezikjian L, Sawchenko P,
Vale W W.
Identification of a second corticotropin-releasing factor receptor gene and characterization
of a cDNA expressed in heart.
Proc Natl Acad Sci USA.
1995;
92
969-29 739
31
Raff H.
Interactions between neurohypophyseal hormones and the ACTH-adrenocortical axis.
Ann N Y Acad Sci.
1993;
689
411-425
32
Rho J h, Swanson L W.
Neuroendocrine CRF motoneurons - intrahypothalamic axon terminals shown with a new
retrograde-lucifer-immuno method.
Brain Res.
1987;
436
143-147
33
Sanchez M M, Young L J, Plotsky P M, Insel T R.
Autoradiographic and in situ hybridization localization of corticotropin-releasing
factor 1 and 2 receptors in nonhuman primates.
J Comp Neurol.
1999;
408
365-377
34
Sattler H D, Richter P, Fritzsche M, von Turner A, Barnett W.
Neurophysiologic testing during antidepressant treatment - an exploratory study.
Pharmacopsychiatry.
2000;
33
229-233
35
Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann I D.
Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense
targeting of the prolactin receptor by molecular modeling.
J Neurosci.
2001;
21
3207-3214
36
Tsai-Morris C H, Buczko E, Geng Y, Gamboa-Pinto A, Dufau M L.
The genomic structure of the rat corticotropin releasing factor receptor - a member
of the class II G protein-coupled receptors.
J Biol Chem.
1996;
271
14 519-14 525
37
Ulisse S, Fabbri A, Tinajero J C, Dufau M L.
A novel mechanism of action of corticotropin releasing factor in rat leydig cells.
J Biol Chem.
1990;
265
1964-1971
38
Van Pett K, Viau V, Bittencourt J C, Chan R KW, Li H Y, Arias C, Prins G S, Perrin M,
Vale W, Sawchenko P E.
Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse.
J Comp Neurol.
2000;
428
191-212
39
Zobel A, Nickel T, Künzel H E, Ackl N, Sonntag A, Ising M, Holsboer F.
Effects of the high affinity corticotropin-releasing hormone receptor 1 antagonist
R121919 in major depression: the first 20 patients treated.
J Psychiatr Res.
2000;
34
71-181
Dr. Martin E. Keck
Max Planck Institute of Psychiatry
Kraepelinstr. 2-10
D-80804 Munich
Germany
Phone: +49-89-30622-314
Fax: +49-89-30622-569
Email: keck@mpipsykl.mpg.de