Subscribe to RSS
DOI: 10.1055/s-2003-38092
The High-affinity Non-peptide CRH1 Receptor Antagonist R121919 Attenuates Stress-induced Alterations in Plasma Oxytocin, Prolactin, and Testosterone Secretion in Rats
Publication History
Received: 20.2.2002
Revised: 11.4.2002
Accepted: 6.6.2002
Publication Date:
21 March 2003 (online)
Abstract
Evidence from basic and clinical research suggests that hyperactivity of central corticotropin-releasing hormone (CRH) circuits contributes to causality and course of affective disorders. Therefore, CRH receptor antagonists have attracted attention as potential therapeutics. We could previously show that the novel high-affinity non-peptide CRH1 receptor antagonist R121919 significantly inhibits stress-induced corticotropin release and displays anxiolytic effects in rats selectively bred for high anxiety-related behavior. These animals are characterized by their innate hyper-reactivity of the hypothalamic-pituitary-adrenocortical system linked to an increased emotionality and therefore are suitable for the evaluation of CRH1 receptor antagonists. Here we show that in addition to its effects on anxiety-related behavior and corticotropin secretion, R121919 attenuates the stress-induced release of corticosterone, prolactin, and oxytocin. Moreover, the decrease in plasma testosterone following exposure to stress is abolished by R121919. Our data indicate that antagonism of CRH1 receptors may prevent stress-associated endocrine alterations.
Key words
Antidepressant - stress - depression - corticotropin-releasing hormone - corticotropin-releasing factor - corticotropin-releasing hormone receptor antagonist - testosterone - prolactin - oxytocin
References
- 1 Akema T, Chiba A, Oshida M, Kimura F, Toyoda J. Permissive role of corticotropin-releasing factor in the acute stress-induced prolactin release in female rats. Neurosci Let. 1995; 198 146-148
- 2 Bruhn T O, Sutton S W, Plotsky P M, Vale W W. Central administration of corticotropin-releasing factor modulates oxytocin secretion in the rat. Endocrinology. 1986; 119 1558-1563
- 3 Chatterton R T, Vogelsong K M, Lu Y C, Hudgens G A. Hormonal responses to psychological stress in men preparing for skydiving. J Clin Endocrinol Metab. 1997; 82 2503-2509
- 4 Gerra G, Zaimovic A, Zambelli U, Timpano M, Reali N, Bernasconi S, Brambilla F. Neuroendocrine response to psychological stress in adolescents with anxiety disorder. Neuropsychobiology. 2000; 42 82-92
- 5 Heinrich N, Meyer M R, Furkert J, Sasse A, Beyermann M, Bönigk W, Berger H. Corticotropin-releasing factor (CRF) agonists stimulate testosterone production in mouse leydig cells through CRF receptor-1. Endocrinology. 1998; 139 651-658
- 6 Heinrichs S C, Lapsansky J, Lovenberg T W, De Souza E B, Chalmers D T. Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Reg Peptides. 1997; 71 15-21
- 7 Henniger M SH, Ohl F, Hölter S M, Weissenbacher P, Toschi N, Lörscher P, Wigger A, Spanagel R, Landgraf R. Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour. Behav Brain Res. 2000; 111 53-163
- 8 Holsboer F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res. 1999; 33 181-214
- 9 Imaki T, Katsumata H, Miyata M, Naruse M, Imaki J, Minami S. Expression of corticotropin releasing factor (CRF), urocortin and CRF type 1 receptors in hypothalamic-hypophyseal systems under osmotic stimulation. J Neuroendocrinol. 2001; 13 328-338
- 10 Keck M E, Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides. 2001; 22 835-844
- 11 Keck M E, Hatzinger M, Wotjak C T, Holsboer F, Landgraf R, Neumann I D. Ageing alters intrahypothalamic release patterns of vasopressin and oxytocin in rats. Eur J Neurosci. 2000; 12 1487-1494
- 12 Keck M E, Welt T, Wigger A, Renner U, Engelmann M, Holsboer F, Landgraf R. The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci. 2001; 13 373-380
- 13 Keck M E, Wigger A, Welt T, Müller M B, Gesing A, Reul J MHM, Holsboer F, Landgraf R, Neumann I D. Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology. 2002; 26 94-105
- 14 Landgraf R. Neuropeptides and anxiety-related behavior. Endocrine J. 2001; 48 517-533
- 15 Lang R E, Heil J WE, Ganten D, Hermann K, Unger T, Rascher W. Oxytocin unlike vasopressin is a stress hormone in the rat. Neuroendocrinology. 1983; 37 314-316
- 16 Liebsch G, Landgraf R, Engelmann M, Lörscher P, Holsboer F. Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res. 1999; 33 153-63
- 17 Liebsch G, Landgraf R, Gerstberger R, Probst J C, Wotjak C T, Engelmann M, Holsboer F, Montkowski A. Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Reg Peptides. 1995; 59 229-39
- 18 Liebsch G, Montkowski A, Holsboer F, Landgraf R. Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res. 1998; 94 301-310
- 19 Liebsch G, Montkowski A, Holsboer F, Landgraf R. Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high and low anxiety-related behavior. Neuropsychopharmacology. 1998; 19 81-396
- 20 Lovenberg T W, Liaw C W, Grigoriadis D E, Clevenger W, Chalmers D T, De Souza E B, Oltersdorf T. Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype. Proc Acad Natl Sci USA. 1995; 92 36-40
- 21 Maric D, Kostic T, Kovacevic R. Effects of acute and chronic immobilization stress on rat Leydig cell steroidogenesis. J Steroid Biochem Mol Biol. 1996; 58 352-355
- 22 Meyerhoff J L, Mougey E H, Kant G J. Paraventricular lesions abolish the stress-induced rise in pituitary cyclic adenosine monophosphate and attenuate the increases in plasma levels of proopiomelanocortin-derived peptides and prolactin. Neuroendocrinology. 1987; 46 222-230
- 23 Morel G, Enjalbert A, Proulx L, Pelletier G, Barden N, Grossard F, Dubois P M. Effect of corticotropin-releasing factor on the release and synthesis of prolactin. Neuroendocrinology. 1989; 49 669-675
- 24 Morgan C A, Wang S, Mason J, Southwick S M, Fox P, Hazlett G, Charney D S, Greefield G. Hormone profiles in humans experiencing military survival training. Biol Psychiatry. 2000; 47 891-901
- 25 Müller M B, Keck M E. Genetically engineered mice for studies of stress-related clinical conditions. J Psychiatr Res. 2002; 36 53-76
- 26 Müller M B, Preil J, Renner U, Zimmermann S, Kresse A E, Stalla G K, Keck M E, Holsboer F, Wurst W. Expression of CRHR1 and CRHR2 in mouse pituitary and adrenal gland: implications for HPA system regulation. Endocrinology. 2001; 142 4150-4153
- 27 Neumann I D, Wigger A, Torner L, Holsboer F, Landgraf R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol. 2000; 12 235-243
- 28 Ohl F, Toschi N, Wigger A, Henniger M SH, Landgraf R. Dimensions of emotionality in a rat model of innate anxiety. Behav Neurosci. 2001; 115 429-436
- 29 Pellow S, Chopin P, File S E, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985; 14 149-167
- 30 Perrin M H, Donaldson C; Chen R, Blount A, Berggren T, Bilezikjian L, Sawchenko P, Vale W W. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci USA. 1995; 92 969-29 739
- 31 Raff H. Interactions between neurohypophyseal hormones and the ACTH-adrenocortical axis. Ann N Y Acad Sci. 1993; 689 411-425
- 32 Rho J h, Swanson L W. Neuroendocrine CRF motoneurons - intrahypothalamic axon terminals shown with a new retrograde-lucifer-immuno method. Brain Res. 1987; 436 143-147
- 33 Sanchez M M, Young L J, Plotsky P M, Insel T R. Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primates. J Comp Neurol. 1999; 408 365-377
- 34 Sattler H D, Richter P, Fritzsche M, von Turner A, Barnett W. Neurophysiologic testing during antidepressant treatment - an exploratory study. Pharmacopsychiatry. 2000; 33 229-233
- 35 Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann I D. Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci. 2001; 21 3207-3214
- 36 Tsai-Morris C H, Buczko E, Geng Y, Gamboa-Pinto A, Dufau M L. The genomic structure of the rat corticotropin releasing factor receptor - a member of the class II G protein-coupled receptors. J Biol Chem. 1996; 271 14 519-14 525
- 37 Ulisse S, Fabbri A, Tinajero J C, Dufau M L. A novel mechanism of action of corticotropin releasing factor in rat leydig cells. J Biol Chem. 1990; 265 1964-1971
- 38 Van Pett K, Viau V, Bittencourt J C, Chan R KW, Li H Y, Arias C, Prins G S, Perrin M, Vale W, Sawchenko P E. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol. 2000; 428 191-212
- 39 Zobel A, Nickel T, Künzel H E, Ackl N, Sonntag A, Ising M, Holsboer F. Effects of the high affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 2000; 34 71-181
Dr. Martin E. Keck
Max Planck Institute of Psychiatry
Kraepelinstr. 2-10
D-80804 Munich
Germany
Phone: +49-89-30622-314
Fax: +49-89-30622-569
Email: keck@mpipsykl.mpg.de