Subscribe to RSS
DOI: 10.1055/s-2003-38365
A High Yielding One-Pot Synthesis of Allylic-Vinylic Alcohols: The Adducts of Tetraallylstannane and α,β-Unsaturated Carbonyl Compounds
Publication History
Publication Date:
28 March 2003 (online)

Abstract
The reaction of α,β-unsaturated aldehydes with tetraallystannane (1, 0.25 equivalents) results in regioselective 1,2-addition to generate the corresponding allylic-vinylic alcohols in good to excellent yields (> 90%). Reactions with the equivalent ketones also proceed well (15-91%) although requiring more forcing conditions. Under these conditions, a second reaction pathway was evident for ketones that were less substituted at C3, namely that of methanolysis at C3. In all instances these reactions are elegant in their simplicity and show high levels of atom efficiency not typically found in similar methodologies for the synthesis of allylic-vinylic alcohols.
Key words
α,β-unsaturated carbonyl compounds - tetraallystannane - allylic-vinylic alcohols
- 1 For a review see:
Grubbs RH.Miller SJ.Fu GC. Acc. Chem. Res. 1995, 28: 446 - For example see:
-
2a
Martín R.Alcón M.Pericàs MA.Riera A. J. Org. Chem. 2002, 67: 6896 -
2b
Gruijters BWT.van Veldhuizen A.Weijers CAGM.Wijnberg JBPA. J. Nat. Prod. 2002, 65: 558 -
2c
Rutjes FPJT.Schoemaker HE. Tetrahedron. Lett. 1997, 38: 677 - 3
House OH.Respess WL.Whitesides GM. J. Org. Chem. 1966, 31: 3128 - 4
House OH.Fischer WF. J. Org. Chem. 1968, 33: 949 - 5
House HO.Latham RA.Slater CD. J. Org. Chem. 1966, 31: 2667 - 6
House OH.Fischer WF. J. Org. Chem. 1969, 34: 3615 -
7a
Yasuda M.Sugawa Y.Yamamoto A.Shibata I.Baba A. Tetrahedron. Lett. 1996, 37: 5951 -
7b
Nagaoka H.Kishi Y. Tetrahedron 1981, 37: 3873 -
7c
Thomas EJ. Chem. Commun. 1997, 411 -
7d
Boldrini GP.Lodi L.Tagliavini E.Tarasco C.Trombini C.Umani-Ronchi A. J. Org. Chem. 1987, 52: 5447 -
7e
Boldrini GP.Tagliavini E.Trombini C.Umani-Ronchi A. Chem. Commun. 1986, 685 - 8
Masuyama Y.Takahara JP.Kurusu Y. J. Am. Chem. Soc. 1988, 110: 4473 - For example see:
-
9a
McCluskey A.Muntari WM.Young DJ. Synlett 1998, 909 -
9b
Cokely TM.Harvey PJ.Marshall RL.McCluskey A.Young DJ. J. Org. Chem. 1997, 62: 961 -
9c
Cokely TM.Marshall RL.McCluskey A.Young DJ. Tetrahedron. Lett. 1996, 37: 1905 - 11
Hoffmann RW.Herold T. Chem. Ber. 1981, 114: 375 - 12
Loh T.-P.Zhou J.-R.Yin Z. Org. Lett. 1999, 1: 1855 - 13
Gordon CM.McCluskey A. Chem. Commun. 1999, 1431 - 15
House HO.Wilkins JM. J. Org. Chem. 1978, 43: 2443 - 16
Yamamoto Y.Yatagai H.Maruyma K. J. Am. Chem. Soc. 1981, 103: 1969 - 17
Spangler CW.Spangler JB. J. Org. Chem. 1973, 38: 2478 - 18
Hagen JP.Lewis KD.Lovell SW.Rossi P.Tezcan AZ. J. Org. Chem. 1995, 60: 7471 - 19
Mandel SK.Amin SR.Crowe WE. J. Am. Chem. Soc. 2001, 123: 6457
References
Experimental: Tetraallylstannane(1) was purchased from Aldrich. Experiments
were conducted in d
4-MeOH (Aldrich).
NMR spectra were recorded on a Bruker Avance 300 MHz instrument.
Chemical shifts are recorded in ppm and signal multiplicities have
been assigned by DEPT experiments. Mass spectra were recorded using
a Shimadzu QP5054 GCMS instrument. Comparison with literature values
previously reported was carried out for compounds 3a,
[10]
3b,
[11]
3c,
[14]
3d,
[15]
3e,
[16]
3f,
[17]
3h,
[14]
and 3i.
[18]
Spectral data for other
compounds is reported below.
General
procedure for the allylation of α,β-unsaturated aldehydes
using 1. A solution of the α,β-unsaturated aldehyde
(1 mmol) and tetraallylstannane (60 µL, 0.25 mmol) in d
4-MeOH (0.7 mL) was left
at 25 ºC overnight. The reaction mixture was then poured
onto water (10 mL) and extracted with CH2Cl2 (3 ¥ 10
mL). The combined organic extracted were dried over MgSO4,
filtered and the solvent removed under reduced pressure to afford
the desired allylic-vinylic alcohol in excellent yield (Table
[1]
).
General
procedure for the allylation of α,β-unsaturated ketones
using 1. A solution of the α,β-unsaturated
ketone (1 mmol) and tetraallylstannane (60 µL, 0.25 mmol)
in d
4-MeOH (0.7 mL) was refluxed
(reaction times for ketones varied from 12-216 h). The
reaction mixture was then poured onto water (10 mL) and extracted
with CH2Cl2 (3 ¥ 10 mL). The combined
organic extracted were dried over MgSO4, filtered and
the solvent removed under reduced pressure to afford the desired
allylic-vinylic alcohol in excellent yield (Table
[2]
). To isolate by-products,
the reaction was scaled up to 20 mmol of ketone. Products 3c, 3e, 3f, and 3g were
then purified by Kugelrohr distillation (0.1 mmHg).
4-Hydroxy-4,5-dimethylhepta-1,5-diene
(3g)
1H NMR
(MeOH-d
4): δ 1.22
(3 H, s, CH3), 1.57 (3 H, d, J = 7.0
Hz, H7), 1.58 (3 H, d, J = 0.8
Hz, CH3), 2.01 (1 H, br, s, OH), 2.19 (1 H, dd, J = 13.9 Hz, 8.1 Hz, H3′),
2.36 (1 H, dd, J = 13.8 Hz,
6.5 Hz, H3), 5.00 (1 H, d, J = 3.6
Hz, H 1′), 5.05 (1 H, br s, H1), 5.50 (1 H, dq, J = 6.6 Hz, 0.9 Hz, H6), 5.63 (1
H, m, H2). 13C NMR (MeOH -d
4): δ 12.5, 13.1
(2 ¥ CH3), 26.8 (CH3), 44.9 (CH2,
C3), 74.6 (C, C4), 117.3 (CH, C6), 118.1 (CH2, C1), 134.0
(CH, C2), 140.0 (C, C5). EI m/z (%) [M+ - 41] 99
(68), 79 (21), 55 (51), 43 (100).
6-Allyl-6-hydroxy-4,8-dimethyl-bicyclo-[3.3.1]nona-3,7-diene-2-ketone
(3j)
1H NMR
(CDCl3): δ 1.69 (3 H, s, H11), 1.97 (1 H, br
s, OH), 2.05 (3 H, s, H10), 2.08 (1 H, dt, J = 12.9
Hz, 3.0 Hz, H9, partially obscured), 2.19 (1 H, dt, J = 12.9 Hz, 3.0 Hz, H9′), 2.47
(2 H, m, H12, H12′), 2.59 (2 H, m, H4 + H8), 5.18
(2 H, m, H14, H14′), 5.21 (1 H, s, H6), 5.74 (1 H, s, H2),
5.95 (1 H, td, J = 17.2 Hz,
7.5 Hz, H13). 13C NMR (CDCl3): δ 21.8
(CH3, C11), 26.7 (CH3, C10), 32.1 (CH2,
C9), 43.7 (CH, C4), 46.8 (CH2, C12), 47.9 (CH, C8), 72.6
(C, C5), 119.5 (CH2, C14), 124.4 (CH, C2), 127.9 (CH,
C6), 133.4 (CH, C13), 134.9 (C, C7), 164.1 (C, C3), 198.2 (C, C1).
EI m/z (%) [M+ - 41] 177
(100), 159 (57), 121 (28), 91 (31), 69 (51), 55 (23), 41 (58).
1-Allyl-1-hydroxy-3-methoxycyclohexane
(4c)
1H NMR
(300 MHz, CDCl3): δ 0.94-1.28 (3 H,
m), 1.46-1.60 (3 H, m), 1.86-2.06 (2 H, m), 2.18
(2 H, d, J = 7.5 Hz, -CH
2CH=CH2),
3.28 (3 H, s, OCH3), 3.41 (1 H, tt, J = 10.9 Hz,
4.2 Hz, H3), 4.98-5.11 (2 H, m, -CH2CH=CH
2), 5.75-5.89 (1
H, m, -CH2CH=CH2).
13C NMR (CDCl3): δ 20.6, 32.5,
36.9 (CH2, C4, C5, C6), 43.0 (CH2, -CH2CH=CH2), 50.3
(CH2, C2), 55.7 (CH3, OCH3), 72.4
(C, C1), 76.3 (CH, C3), 118.3 (CH2, -CH2CH=CH2),
135.3 (CH, -CH2
CH= CH2).
EI m/z (%) [M+ - 41] 129
(40), 97 (85), 69 (82), 55 (50), 41 (100).
4-Ethyl-4-hydroxy-6-methoxy-hex-1-ene
(4e)
1H NMR
(MeOH-d
4): δ 0.85
(3 H, t, J = 7.4 Hz, -CH
2CH3), 1.45 (2
H, q, J = 7.4 Hz, -CH2CH
3), 1.69 (2 H, t, J = 7.1 Hz), 2.19 (2 H, d, J = 7.3 Hz), 3.28 (3 H, s, OCH3),
3.49 (2 H, t,
J = 7.1
Hz), 4.95-5.05 (2 H, m, H1), 5.75-5.89 (1 H, m,
H2). 13C NMR (MeOH-d
4): δ 8.1
(CH3, -CH2
CH3),
32.6, 38.6 (CH2, C5, -CH2CH3),
44.4 (CH2, C3), 58.9 (CH3, OCH3), 70.0
(CH2, C6), 74.5 (C, C4), 118.0 (CH2, C1),
135.4 (CH, C2). EI m/z (%) [M+ - 41] 117
(21), 99 (6), 85 (35), 69 (15), 57 (100), 45 (95).
4-Hydroxy-6-methoxy-4-methyl-hept-1-ene
(4f)
1H NMR
(MeOH-d
4): δ 1.12
(3 H, s, CH3), 1.15 (3 H, d, J = 4.95
Hz, H7), 1.65 (1 H, m), 1.52 (1 H, dd, J = 8.3
Hz, 3.3 Hz), 2.24 (2 H, d, J = 7.4
Hz), 3.30 (3 H, d, J = 1.7 Hz, OCH3),
3.65 (1 H, m, H6), 5.02 (1 H, m, H1′), 5.06 (1 H, m, H1),
5.84 (1 H, m, H2). 13C NMR (MeOH-d
4): δ 20.2 (CH3, CH3),
27.1 (CH3, C7), 48.1, 48.3 (CH2, C3, C5),
55.8 (CH3, OCH3), 72.9 (C, C4), 75.6 (CH,
C6), 118.0 (CH2, C1), 135.8 (CH, C2).
EI m/z (%) [M+ - 41] 117
(31), 85 (19), 69 (14), 59 (91), 43 (100).
4-Hydroxy-6-methoxy-4,5-dimethyl-hept-1-ene
(4g)
EI m/z (%) [M+ - 41] 99
(2), 83 (2), 71 (1), 56 (94), 43 (100).
Modelling studies were conducted using MacSpartanPro software, version 1.0, Wavefunction, Inc. Irvine USA. Equilibrium geometries were calculated using semi-empirical methods, AM1 model. Conformer distributions were analysed using Molecular Mechanics method of analysis, MMFF model.