References
1 For a review see: Grubbs RH.
Miller SJ.
Fu GC.
Acc. Chem. Res.
1995,
28:
446
For example see:
2a
Martín R.
Alcón M.
Pericàs MA.
Riera A.
J.
Org. Chem.
2002,
67:
6896
2b
Gruijters BWT.
van Veldhuizen A.
Weijers CAGM.
Wijnberg JBPA.
J. Nat. Prod.
2002,
65:
558
2c
Rutjes FPJT.
Schoemaker HE.
Tetrahedron. Lett.
1997,
38:
677
3
House OH.
Respess WL.
Whitesides GM.
J. Org. Chem.
1966,
31:
3128
4
House OH.
Fischer WF.
J. Org.
Chem.
1968,
33:
949
5
House HO.
Latham RA.
Slater CD.
J. Org. Chem.
1966,
31:
2667
6
House OH.
Fischer WF.
J. Org.
Chem.
1969,
34:
3615
7a
Yasuda M.
Sugawa Y.
Yamamoto A.
Shibata I.
Baba A.
Tetrahedron. Lett.
1996,
37:
5951
7b
Nagaoka H.
Kishi Y.
Tetrahedron
1981,
37:
3873
7c
Thomas EJ.
Chem. Commun.
1997,
411
7d
Boldrini GP.
Lodi L.
Tagliavini E.
Tarasco C.
Trombini C.
Umani-Ronchi A.
J.
Org. Chem.
1987,
52:
5447
7e
Boldrini GP.
Tagliavini E.
Trombini C.
Umani-Ronchi A.
Chem. Commun.
1986,
685
8
Masuyama Y.
Takahara JP.
Kurusu Y.
J.
Am. Chem. Soc.
1988,
110:
4473
For example see:
9a
McCluskey A.
Muntari WM.
Young DJ.
Synlett
1998,
909
9b
Cokely TM.
Harvey PJ.
Marshall RL.
McCluskey A.
Young DJ.
J. Org. Chem.
1997,
62:
961
9c
Cokely TM.
Marshall RL.
McCluskey A.
Young DJ.
Tetrahedron.
Lett.
1996,
37:
1905
10
Experimental: Tetraallylstannane(1) was purchased from Aldrich. Experiments
were conducted in d
4-MeOH (Aldrich).
NMR spectra were recorded on a Bruker Avance 300 MHz instrument.
Chemical shifts are recorded in ppm and signal multiplicities have
been assigned by DEPT experiments. Mass spectra were recorded using
a Shimadzu QP5054 GCMS instrument. Comparison with literature values
previously reported was carried out for compounds 3a,
[10]
3b,
[11]
3c,
[14]
3d,
[15]
3e,
[16]
3f,
[17]
3h,
[14]
and 3i.
[18]
Spectral data for other
compounds is reported below.
General
procedure for the allylation of α,β-unsaturated aldehydes
using 1. A solution of the α,β-unsaturated aldehyde
(1 mmol) and tetraallylstannane (60 µL, 0.25 mmol) in d
4-MeOH (0.7 mL) was left
at 25 ºC overnight. The reaction mixture was then poured
onto water (10 mL) and extracted with CH2Cl2 (3 ¥ 10
mL). The combined organic extracted were dried over MgSO4,
filtered and the solvent removed under reduced pressure to afford
the desired allylic-vinylic alcohol in excellent yield (Table
[1]
).
General
procedure for the allylation of α,β-unsaturated ketones
using 1. A solution of the α,β-unsaturated
ketone (1 mmol) and tetraallylstannane (60 µL, 0.25 mmol)
in d
4-MeOH (0.7 mL) was refluxed
(reaction times for ketones varied from 12-216 h). The
reaction mixture was then poured onto water (10 mL) and extracted
with CH2Cl2 (3 ¥ 10 mL). The combined
organic extracted were dried over MgSO4, filtered and
the solvent removed under reduced pressure to afford the desired
allylic-vinylic alcohol in excellent yield (Table
[2]
). To isolate by-products,
the reaction was scaled up to 20 mmol of ketone. Products 3c, 3e, 3f, and 3g were
then purified by Kugelrohr distillation (0.1 mmHg).
4-Hydroxy-4,5-dimethylhepta-1,5-diene
(3g)
1H NMR
(MeOH-d
4): δ 1.22
(3 H, s, CH3), 1.57 (3 H, d, J = 7.0
Hz, H7), 1.58 (3 H, d, J = 0.8
Hz, CH3), 2.01 (1 H, br, s, OH), 2.19 (1 H, dd, J = 13.9 Hz, 8.1 Hz, H3′),
2.36 (1 H, dd, J = 13.8 Hz,
6.5 Hz, H3), 5.00 (1 H, d, J = 3.6
Hz, H 1′), 5.05 (1 H, br s, H1), 5.50 (1 H, dq, J = 6.6 Hz, 0.9 Hz, H6), 5.63 (1
H, m, H2). 13C NMR (MeOH -d
4): δ 12.5, 13.1
(2 ¥ CH3), 26.8 (CH3), 44.9 (CH2,
C3), 74.6 (C, C4), 117.3 (CH, C6), 118.1 (CH2, C1), 134.0
(CH, C2), 140.0 (C, C5). EI m/z (%) [M+ - 41] 99
(68), 79 (21), 55 (51), 43 (100).
6-Allyl-6-hydroxy-4,8-dimethyl-bicyclo-[3.3.1]nona-3,7-diene-2-ketone
(3j)
1H NMR
(CDCl3): δ 1.69 (3 H, s, H11), 1.97 (1 H, br
s, OH), 2.05 (3 H, s, H10), 2.08 (1 H, dt, J = 12.9
Hz, 3.0 Hz, H9, partially obscured), 2.19 (1 H, dt, J = 12.9 Hz, 3.0 Hz, H9′), 2.47
(2 H, m, H12, H12′), 2.59 (2 H, m, H4 + H8), 5.18
(2 H, m, H14, H14′), 5.21 (1 H, s, H6), 5.74 (1 H, s, H2),
5.95 (1 H, td, J = 17.2 Hz,
7.5 Hz, H13). 13C NMR (CDCl3): δ 21.8
(CH3, C11), 26.7 (CH3, C10), 32.1 (CH2,
C9), 43.7 (CH, C4), 46.8 (CH2, C12), 47.9 (CH, C8), 72.6
(C, C5), 119.5 (CH2, C14), 124.4 (CH, C2), 127.9 (CH,
C6), 133.4 (CH, C13), 134.9 (C, C7), 164.1 (C, C3), 198.2 (C, C1).
EI m/z (%) [M+ - 41] 177
(100), 159 (57), 121 (28), 91 (31), 69 (51), 55 (23), 41 (58).
1-Allyl-1-hydroxy-3-methoxycyclohexane
(4c)
1H NMR
(300 MHz, CDCl3): δ 0.94-1.28 (3 H,
m), 1.46-1.60 (3 H, m), 1.86-2.06 (2 H, m), 2.18
(2 H, d, J = 7.5 Hz, -CH
2CH=CH2),
3.28 (3 H, s, OCH3), 3.41 (1 H, tt, J = 10.9 Hz,
4.2 Hz, H3), 4.98-5.11 (2 H, m, -CH2CH=CH
2), 5.75-5.89 (1
H, m, -CH2CH=CH2).
13C NMR (CDCl3): δ 20.6, 32.5,
36.9 (CH2, C4, C5, C6), 43.0 (CH2, -CH2CH=CH2), 50.3
(CH2, C2), 55.7 (CH3, OCH3), 72.4
(C, C1), 76.3 (CH, C3), 118.3 (CH2, -CH2CH=CH2),
135.3 (CH, -CH2
CH= CH2).
EI m/z (%) [M+ - 41] 129
(40), 97 (85), 69 (82), 55 (50), 41 (100).
4-Ethyl-4-hydroxy-6-methoxy-hex-1-ene
(4e)
1H NMR
(MeOH-d
4): δ 0.85
(3 H, t, J = 7.4 Hz, -CH
2CH3), 1.45 (2
H, q, J = 7.4 Hz, -CH2CH
3), 1.69 (2 H, t, J = 7.1 Hz), 2.19 (2 H, d, J = 7.3 Hz), 3.28 (3 H, s, OCH3),
3.49 (2 H, t,
J = 7.1
Hz), 4.95-5.05 (2 H, m, H1), 5.75-5.89 (1 H, m,
H2). 13C NMR (MeOH-d
4): δ 8.1
(CH3, -CH2
CH3),
32.6, 38.6 (CH2, C5, -CH2CH3),
44.4 (CH2, C3), 58.9 (CH3, OCH3), 70.0
(CH2, C6), 74.5 (C, C4), 118.0 (CH2, C1),
135.4 (CH, C2). EI m/z (%) [M+ - 41] 117
(21), 99 (6), 85 (35), 69 (15), 57 (100), 45 (95).
4-Hydroxy-6-methoxy-4-methyl-hept-1-ene
(4f)
1H NMR
(MeOH-d
4): δ 1.12
(3 H, s, CH3), 1.15 (3 H, d, J = 4.95
Hz, H7), 1.65 (1 H, m), 1.52 (1 H, dd, J = 8.3
Hz, 3.3 Hz), 2.24 (2 H, d, J = 7.4
Hz), 3.30 (3 H, d, J = 1.7 Hz, OCH3),
3.65 (1 H, m, H6), 5.02 (1 H, m, H1′), 5.06 (1 H, m, H1),
5.84 (1 H, m, H2). 13C NMR (MeOH-d
4): δ 20.2 (CH3, CH3),
27.1 (CH3, C7), 48.1, 48.3 (CH2, C3, C5),
55.8 (CH3, OCH3), 72.9 (C, C4), 75.6 (CH,
C6), 118.0 (CH2, C1), 135.8 (CH, C2).
EI m/z (%) [M+ - 41] 117
(31), 85 (19), 69 (14), 59 (91), 43 (100).
4-Hydroxy-6-methoxy-4,5-dimethyl-hept-1-ene
(4g)
EI m/z (%) [M+ - 41] 99
(2), 83 (2), 71 (1), 56 (94), 43 (100).
11
Hoffmann RW.
Herold T.
Chem. Ber.
1981,
114:
375
12
Loh T.-P.
Zhou J.-R.
Yin Z.
Org.
Lett.
1999,
1:
1855
13
Gordon CM.
McCluskey A.
Chem. Commun.
1999,
1431
14 Modelling studies were conducted using
MacSpartanPro software, version 1.0,
Wavefunction, Inc. Irvine USA. Equilibrium geometries were calculated
using semi-empirical methods, AM1 model. Conformer distributions were
analysed using Molecular Mechanics method of analysis, MMFF model.
15
House HO.
Wilkins JM.
J. Org. Chem.
1978,
43:
2443
16
Yamamoto Y.
Yatagai H.
Maruyma K.
J.
Am. Chem. Soc.
1981,
103:
1969
17
Spangler CW.
Spangler JB.
J. Org. Chem.
1973,
38:
2478
18
Hagen JP.
Lewis KD.
Lovell SW.
Rossi P.
Tezcan AZ.
J. Org. Chem.
1995,
60:
7471
19
Mandel SK.
Amin SR.
Crowe WE.
J.
Am. Chem. Soc.
2001,
123:
6457