References
1a
Orita A.
Nagano Y.
Nakazawa K.
Otera J.
Synlett
2000,
599
1b
Nagano Y.
Orita A.
Otera J.
Tetrahedron
2002,
58:
8211
2
Brown GD.
Phytochemistry
1994,
35:
1037
3a
Mikami K.
Terada M.
Nakai T.
J. Org. Chem.
1991,
56:
5456
3b
Hanyuda K.
Hirai K.
Nakai T.
Synlett
1997,
31
3c
Chen J.
Otera J.
Synlett
1997,
29
3d
Chen J.
Otera J.
Tetrahedron
1997,
53:
14275
3e
Chen J.
Sakamoto K.
Orita A.
Otera J.
J. Org. Chem.
1998,
63:
9739
3f
Asao N.
Asano T.
Yamamoto Y.
Angew.
Chem. Int. Ed.
2001,
40:
3206
For allylation with tetrallyltin:
4a
Yanagisawa A.
Inoue H.
Morodome M.
Yamamoto H.
J. Am. Chem. Soc.
1993,
115:
10356
4b
Cokley TM.
Harvey PJ.
Marshall RL.
McCluskey A.
Young DJ.
J. Org. Chem.
1997,
62:
1961
4c
McCluskey A.
Muderawan IW.
.
Young DJ.
J. Org. Chem.
2001,
66:
7811
4d
Gordon C.
McCluskey A.
Chem. Commun.
1999,
1431
4e
Yasuda M.
Kitahara N.
Fujibayashi T.
Baba A.
Chem. Lett.
1998,
743
4f
Yasuda M.
Fujibayashi T.
Baba A.
J.
Org. Chem.
1998,
63:
6401
4g
Hachiya I.
Kobayashi S.
J. Org. Chem.
1993,
58:
6958
4h
Kobayashi S.
Nagayama S.
Busujima T.
Chem.
Lett.
1997,
959
4i
Harpp DN.
Gingras M.
J. Am. Chem.
Soc.
1988,
110:
7737
4j
Fukuzawa S.-I.
Sato K.
Fujinami T.
Sakai S.
J. Chem. Soc., Chem. Commun.
1990,
939
4k
Kobayashi S.
Nagayama S.
J. Org. Chem.
1996,
61:
2256
4l
Asao N.
Kii S.
Hanawa H.
Maruoaka K.
Tetrahedron Lett.
1998,
39:
3729
4m
Aspinall HC.
Greeves N.
McIver EG.
Tetrahedron Lett.
1998,
39:
9283
4n
Casolari S.
D’Addario D.
Tagliavini E.
Org.
Lett.
1999,
7:
1061
4o
Hamasaki R.
Chounan Y.
Horino H.
Yamamoto Y.
Terahedron Lett.
2000,
41:
9883 ; among these studies, more than 80% yields
were reported in refs. 4a-c,4k
5a For
Me2AlCl-catalyzed Mukaiyama aldol: Naruse Y.
Ukai J.
Ikeda N.
Yamamoto H.
Chem. Lett.
1985,
1451
5b For TMSOTf-catalyzed Mukaiyama
aldol: Jefford CW.
Jaggi D.
Boukouvalas J.
Tetrahedron
Lett.
1987,
28:
4037
6
Orita A.
Nagano Y.
Nakazawa K.
Otera J.
Adv. Synth. Cat.
2002,
344:
548
7 When benzaldehyde was employed in place
of p-anisaldehyde, a shotgun process
did not take place because the reaction of benzaldehyde with the
ketene silyl acetal became slow due to the decreased coordinating
ability of this substrate and parallel reactions alternatively occurred.
8 The substrate was prepared as follows.
To a suspension of vanillin (1.52 g, 10.0 mmol) and K2CO3 (4.15
g, 30.0 mmol) in DMF (20 mL) was added 3-bromopropionaldehyde dimethyl
acetal (1.64 mL, 12.0 mmol) at room temperature, and then the mixture
was heated to 100 °C for 12 h. After addition of water
(20 mL) at 0 °C and usual workup (EtOAc-water),
the combined organic layer was washed with water and brine. After
drying over Na2SO4 and filtration, the organic
layer was concentrated under reduced pressure. The crude mixture
was subjected to column chromatography on silica gel to afford 9 (7:3 hexane-EtOAc, 2.42 g, 95% yield). To
a solution of 9 (2.42 g, 9.50 mmol) in
THF (10 mL) was added 6 N HCl aq (4 mL) at 0 °C, and then
the mixture was warmed to room temperature. The mixture was stirred
for 2 h, and NaHCO3 aq was added until pH 8 at 0 °C.
After usual workup (EtOAc/water), the organic layer was
washed with brine. The organic layer was dried over Na2SO4,
filtered, and concentrated under reduced pressure. Recrystallization
of the crude mixture from Et2O afforded 4 (415
mg, 21% yield). 4: 1H
NMR (300 MHz, CDCl3) δ 3.07 (dt, J = 1.1 Hz, 6.3 Hz, 2 H), 3.91
(s, 3 H), 4.44 (t, J = 6.3 Hz,
2 H), 7.03 (d, J = 8.1 Hz, 1
H), 7.41 (d, J = 1.8 Hz, 1 H),
7.46 (dd, J = 1.8, 8.1 Hz, 1
H), 9.86 (s, 1 H), 9.90 (t, J = 1.1
Hz, 1 H). 13C NMR (75 MHz, CDCl3) δ 42.9,
55.9, 62.5, 109.3, 111.7, 126.6, 130.4, 149.7, 153.3, 190.9, 199.4.
HRMS (EI) calcd for C11H12O4: 208.0736;
found: 208.0740.
9 Shotgun process for 5 (Scheme
[8]
): To a solution of 2 (0.10 mL,
0.40 mmol), 3 (223 mg, 1.10 mmol) and 4 (208 mg, 1.00 mmol) in CH2Cl2 (5
mL) was added a 0.5 M CH2Cl2 solution of TMSOTf
(0.20 mL, 0.10 mmol) at -78 °C under Ar. After the
mixture had been stirred for 5 h, NaHCO3 aq (10 mL) was
added. After usual workup (EtOAc-water), the organic layer
was washed with 1 N HClaq, NaHCO3 aq and brine. After
drying over Na2SO4 and filtration, the organic
layer was concentrated under reduced pressure. The crude mixture was
subjected to column chromatography on silica gel to afford 5 (17:3 hexane-EtOAc, 358 mg,
79% yield). 5 (diastereomer mixture): 1H
NMR (300 MHz, CDCl3) δ -0.15 (s, 3
H), 0.02 (s, 3 H), 0.85 (s, 9 H), 1.26 (t, J = 7.2
Hz, 3 H), 1.91-2.02 (m, 2 H), 2.32 (t, J = 6.7
Hz, 2 H), 2.52 (dd, J = 4.0
Hz, 14.5 Hz, 1H), 2.70 (dd, J = 9.4
Hz, 14.5 Hz, 1 H), 3.08 (br, 1 H), 3.84 (s, 3 H), 3.93-4.01
(m, 1 H), 4.05-4.31 (m, 4 H), 5.07-5.17 (m, 3
H), 5.80-5.94 (m, 1 H), 6.82 (s, 2 H), 6.92 (s, 1 H). 13C
NMR (75 MHz, CDCl3) δ -5.4, -4.7, 14.1,
18.0, 25.6, 35.4, 35.5, 41.9, 46.6, 55.7, 60.4, 67.6, 67.7, 69.9,
71.9, 108.8, 112.3, 117.6, 117.8, 134.7, 137.4, 147.2, 149.1, 171.2.
HRMS (EI) calcd for C24H40O6Si:
452.2594; found: 452.2584.
10
1: 1H
NMR (300 MHz, CDCl3) δ 0.94 (t, J = 7.3 Hz, 3 H), 1.65 (sext, J = 7.3 Hz, 2 H), 2.49 (t, J = 7.3 Hz, 2 H), 2.98 (t, J = 6.6 Hz, 2 H), 3.88 (s, 3
H), 4.33 (t, J = 6.6 Hz, 2 H),
6.32 (d, J = 15.9 Hz, 1 H),
6.92 (d, J = 8.3 Hz, 1 H), 7.07
(d, J = 1.7 Hz, 1 H), 7.12 (dd, J = 1.7 Hz, 8.3 Hz, 1 H), 7.72
(d, J = 15.9 Hz, 1 H). 13C
NMR (75 MHz, CDCl3) δ 13.6, 17.1, 41.8, 45.4,
55.9, 64.0, 110.3, 112.7, 115.0, 123.0, 127.4, 146.9, 149.5, 150.6,
172.3, 208.5. HRMS (EI) calcd for C16H20O5: 292.1311;
found: 292.1308.
11
1′: 1H
NMR (300 MHz, CDCl3) δ 0.94 (t, J = 7.4 Hz, 3 H), 1.65 (sext, J = 7.4 Hz, 2 H), 2.50 (t, J = 7.4 Hz, 2 H), 2.97 (t, J = 6.5 Hz, 2 H), 3.87 (s, 3
H), 4.32 (t, J = 6.5 Hz, 2 H),
6.32 (d, J = 15.9 Hz, 1 H),
6.87 (d, J = 8.8 Hz, 1 H), 7.13-7.16
(m, 2 H), 7.71 (d, J = 15.9
Hz, 1 H). 13C NMR (75 MHz, CDCl3) δ 13.6,
17.0, 41.9, 45.4, 55.9, 64.2, 111.4, 112.2, 115.0, 123.4, 127.0,
146.7, 148.3, 151.8, 172.4, 208.7.
12a
Chen J.
Otera J.
Angew.
Chem. Int. Ed.
1998,
37:
91
12b
Chen J.
Otera J.
Tetrahedron Lett.
1998,
39:
1767
12c
Chen J.
Sakamoto K.
Orita A.
Otera J.
Tetrahedron
1998,
54:
8411