Zusammenfassung
Hintergrund: Sowohl das Gefäßsystem als auch die Drüsen der menschlichen Nasenschleimhaut unterliegen einer komplizierten Steuerung durch zentrale und lokale Einflüsse. Neben den klassisch-vegetativen und peptidergen Neurotransmittern kann auch von einer Beeinflussung durch endogen gebildetes Stickoxid (NO) ausgegangen werden. NO führt zur Stimulation des Immunsystems, hat antibakterielle und antivirale Wirkungen und moduliert die Schlagfrequenz des Epithels. Ziel der Untersuchungen war der immunelektronenmikroskopische Nachweis der Lokalisation der NO-Synthase (NOS)-Isoformen I und III in der entzündungsfreien Nasenschleimhaut des Menschen.
Material und Methode: Proben der unteren Nasenmuschel von 35 Patienten wurden in einer Paraformaldehyd-Glutaraldehyd-Mischung fixiert. Nach Dehydrierung, Unicryl-Inkubation und Polymerisation erfolgte zur Markierung von NO die Applikation von Primärantikörpern gegen die neuronale bzw. endotheliale Isoform der NO-Synthase (NOS I und III). Abschließend wurde nach einer Streptavidin-Gold-Markierung und Kontrastierung der Präparate die Auswertung am Transmissionselektronenmikroskop durchgeführt.
Ergebnisse: Immunreaktive nitrerge Nervenfasern fanden sich in Axonen um die seromukösen Drüsen und im Bereich arterieller Gefäße. Besonders in drüsennahen Kapillaren konnte endotheliale NOS nachgewiesen werden. Im endothelialen Zytoplasma von Kapillaren und Arteriolen war eine starke Akkumulation von NO darstellbar. An Fibroblasten des Stromas wurden intensive Immunreaktionen beobachtet.
Schlussfolgerungen: Stickoxide beteiligen sich auf verschiedene Weise an der Regulation der physiologischen Funktionen der Nasenschleimhaut. Als Ko-Transmitter in parasympathischen Nervenfasern kann NO ein neuromodulatorischer, vasodilatatorischer Effekt an Gefäßen und eine stimulierende Wirkung an seromukösen Drüsen zugeschrieben werden. Endothelial gebildetes NO scheint eine relaxierende Wirkung besonders an arteriellen Gefäßen auszuüben. Das Vorkommen von NO an Fibroblasten kann bei strukturellen Veränderungen durch Rhinopathien eine Rolle spielen. Hier bestehen zukünftig Ansatzpunkte zur Therapie verschiedener Rhinitiden.
Abstract
Background: Nasal vasculature and seromucous glands are exposed to complex mechanisms influenced by external as well as internal stimuli. In addition to classic and peptidergic neurotransmitters, Nitric oxide (NO) was increasingly found to be important in the control of various physiological functions. NO regulates nasal immunology, influences macrophages activity and has antiviral and bacteriostatic properties. The aim of this study was to detect the localization of nitric oxide synthases (NOS) I and III in the normal human nasal mucosa with immunoelectron microscopical techniques.
Methods: Specimens of non-inflamed inferior turbinates from 35 patients who required nasal surgery were fixed in phosphate-buffered glutaraldehyde. After dehydration, incubation in unicryl and polymerization ultrathin sections were cut. Primary antibodies against NOS I and III were applied and the immunocomplexes were visualized by an immunocytochemical staining-technique using a gold-labeled antibody. Immunostained structures were photodocumented by using a transmission electron microscope.
Results: NOS-immunoreactive nerve fibers were mainly colocated in parasympathetic nerves in the adventitia of arterial vessels and in periglandular axons. Electron microscopy showed that NOS-positive axons were in close contact with acinus cells. A strong NOS III-immunoreactivity was found in endothelial cells of capillaries near the glands as well as in arterial vessels. Furthermore, immunoreaction products were deposited throughout the cytoplasm of fibroblasts.
Conclusions: Nitric oxide in nerval fibers, seromucous glands and endothelial cells of capillaries and arterial vessels suggests that NO takes part in the regulation of physiological processes of the human nasal mucosa. NO was colocalized in parasympathetic nerves and plays a role in the neurotransmission and neuromodulation of the vascular tone and glandular secretion. Arteries showed a distinctly developed nitric innervation and endothelial accumulation. The NO production in axons of the adventitia and in the endothelium of arteries demonstrated that these vessels are influenced by a dual NO system. Mainly NO could act on these structures with vasodilatatory effects. Finally NO would be able to influence the functions of perivascular fibroblasts.
Schlüsselwörter
Stickstoffmonoxid - Nasenschleimhaut - Neurotransmitter - Immunelektronenmikroskopie
Key words
Nitric oxide - Human nasal mucosa - Neurotransmitters - Immunoelectron microscopy
Literatur
1
Jeon S Y, Kim J, Hwang E G.
Origin and distribution of NADPH diaphorase-positive nerves in rat nasal mucosa.
Ann Otorhinolaryngol.
1997;
106(8)
688-692
2
Riederer A, Held B, Wörl J, Unger J.
Endogen gebildetes Stickstoffmonoxid in der Nasenschleimhaut des Menschen: Nachweis mittels Nikotinamid Adenin Dinukleotid Phosphat-Diaphorase (NADPH-d) Histochemie.
Laryngo-Rhino-Otol.
1996;
75
584-589
3
Riederer A, Held B, Mack B.
Immunhistochemische Untersuchungen zur Verteilung der konstitutiven Stickoxidsynthase in Gefäßendothelien der Nasenschleimhaut des Menschen.
Laryngo-Rhino-Otol.
1999;
78
373-377
4
Riederer A, Held B, Mayer B, Wörl J.
Histochemical and immunocytochemical study of nitric innervation in human nasal mucosa.
Ann Otorhinolaryngol.
1999;
108(9)
869-875
5
Tasman A J, Bogatzki B, Heppt W, Hauser-Kronberger C, Fischer A.
Nitric oxide synthase in the innervation of the human nasal mucosa: Correlation with Neuropeptides and Tyrosine Hydroxylase.
Laryngoscope.
1998;
108
128-133
6
Hanazawa T, Tanaka K, Chiba T, Konno A.
Distribution and origin of nitric oxide synthase-containing nerve fibers in human nasal mucosa.
Acta Otolaryngol.
1997;
117(5)
735-737
7
Kondo T, Inokuchi T, Otha K, Annoh H, Chang J.
Distribution, chemical coding and origin of nitric oxide synthase-containing nerve fibers in the guinea pig nasal mucosa.
J Auton Nerv Syst.
2000;
80(1 - 2)
71-79
8
Palmer R MJ, Ferrige A G, Moncada S.
Nitric oxide release acounts for the biological activity of endothelium-derived relaxing factor.
Nature.
1987;
327
524-526
9
Kawamoto H, Takumida M, Takeno S, Watanabe H, Fukushima N, Yajin K.
Localization of nitric oxide synthase in human nasal mucosa with nasal allergy.
Acta Otolaryngol Suppl.
1998;
539
65-70
10
Lundberg J ON, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Änggard A, Hökfelt T, Lundberg J M, Alving K.
High nitric oxide production in human paranasal sinuses.
Nature Medicine.
1995;
1
370-373
11
Ueda T, Takumida M, Takeno S, Tashiro T, Kawamoto H, Yajin K.
Functional role of nitric oxide in the nasal mucosa of the guinea pig after instillation with lipopolysaccharide.
Acta Otolaryngol.
2001;
121
510-516
12
Heß A, Bloch W, Rocker J, Addicks K, Stennert E, Michel O.
In vitro expression of inducible nitric oxide synthase in the nasal mucosa of guinea pigs after incubation with lipipolysaccharides or cytokines.
Eur Arch Otorhinolaryngol.
1998;
255
448-453
13
Heß A, Bloch W, Rocker J, Peters S, Stennert E, Addicks K, Michel O.
Nachweis von Stickstoffmonoxidsynthasen bei physiologischen und pathophysiologischen Prozessen in der Nasenschleimhaut.
HNO.
2000;
48
489-495
14
Heinrich U R, Maurer J, Gosepath K, Mann W.
Electron microscopic localization of nitric oxide I synthase in the organ of Corti of the guinea pig.
Eur Arch Otorhinolaryngol.
1997;
254
396-400
15
Heinrich U R, Maurer J, Gosepath K, Mann W.
Immunoelectron microscopic localization of nitric oxide synthase III in the guinea pig organ of Corti.
Eur Arch Otorhinolaryngol.
1998;
255
483-490
16
Kang B H, Chen S S, Jou L S, Weng P K, Wang H W.
Immunolocalization of inducible nitric oxide synthase and 3-nitrotyrosine in the nasal mucosa of patients with rhinitis.
Eur Arch Otorhinolaryngol.
2000;
257(5)
242-246
17
Schmidt H HHW, Pollock J S, Nakane M, Förstermann U, Murad F.
Ca2+ /calmodulin-regulated nitric oxide synthases.
Cell Calcium.
1992;
13
427-434
18
Garthwaite J.
Glutamate, nitric oxide and cell-cell signalling in the nervous system.
Trends Neurosci.
1991;
14
60-67
19
Ruffoli R, Fattori B, Giambelluca M A, Soldani P, Giannessi F.
Ultracytochemical localization of the NADPH-d activity in the human nasal respiratory mucosa in vasomotor rhinitis.
Laryngoscope.
2000;
110
1361-1365
20
Pollock J S, Nakane M, Buttery L DK, Martinez A, Springall D, Polack J M, Förstermann U, Murad F.
Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies.
Am J Physiol.
1993;
265
C1379-1387
21
Fischer A, Mundel P, Mayer B, Preissler U, Philippin B, Kummer W.
Nitric oxide synthase in guinea pig lower airway innervation.
Neurosci Lett.
1993;
149
157-160
22
Sakai M, Sawada T, Nishimura T, Nagatsu I.
Expression of nitric oxide synthase in the mouse and human nasal mucosa.
Cytochem.
1996;
29
177-179
23
Brown J F, Keates A C, Hanson P J, Whittle B JR.
Nitric oxide generators and cGMP stimulate mucus secretion by rat gastric mucosal cells.
Am J Physiol.
1993;
265
G418-422
24
Knipping S t, Holzhausen H J, Agha-Mir-Salim P, Riederer A, Berghaus A.
Elektronenmikroskopische Untersuchungen zur Innervation der Drüsen der Nasenschleimhaut des Menschen.
Laryngo-Rhino-Otol.
2000;
79
146-150
25
Loesch A, Belai A, Burnstock G.
Ultrastructural localization of NADPH-diaphorase and colocalization of nitric oxide synthase in endothelial cells of the rabbit aorta.
Cell Tissue Res.
1993;
274
539-545
Dr. med. Stephan Knipping
Universitätsklinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie der Martin-Luther-Universität Halle-Wittenberg
Magdeburger Straße 12 · 06097 Halle/Saale
Email: stephan.knipping@medizin.uni-halle.de