References
1a
Armstrong RW.
Combs AP.
Tempest PA.
Brown SD.
Keating TA.
Acc.
Chem. Res.
1996,
29:
123
1b
Ugi I.
Doemling A.
Angew. Chem. Int. Ed.
2000,
39:
3168
1c
Ugi I.
Heck S.
Comb. Chem. High Throughput Screen.
2001,
4:
1
2a
De Laszlo SE.
Williard PG.
J. Am. Chem. Soc.
1985,
107:
199
2b
Bauer SM.
Armstrong RW.
J.
Am. Chem. Soc.
1999,
121:
6355
2c
Owens TD.
Semple JE.
Org. Lett.
2001,
3:
3301
3
Weber L.
Illgen K.
Almstetter M.
Synlett
1999,
366
4
Lacke O.
Weber L.
Chimia
1996,
50:
445
5a
Dömling A.
Curr. Opin. Chem.
Biol.
2000,
4:
318
5b
Dömling A.
Curr. Opin. Chem. Biol.
2002,
6:
306
6a
Mizuya J.
Yokozawa T.
Endo T.
J. Am. Chem. Soc.
1989,
111:
743
6b
Feldman KS.
Bobo JS.
Tewalt GL.
J. Org. Chem.
1992,
57:
4573
6c
Chowdari NS.
Ramachary DB.
Cordova A.
Barbas CF.
Tetrahedron Lett.
2002,
43:
9591
7a
Diels O.
Harms J.
Liebigs
Ann. Chem.
1936,
525:
73
7b
Acheson RM.
Hole F.
J. Chem. Soc.
1962,
748
8
General Procedure. According
to the classical experiment,
[7a]
a
mixture of 0.1 mmol of each of the compounds: isoquinoline and two
unsaturated starting materials were stirred in 0.13 mL of Et2O
for 48 h at 20 °C. After evaporation of solutions to dryness
the residua were analyzed by HPLC. In the case of the products 12, the crude mixtures were purified by
crystallisation or flash-chromatography.
9
HPLC Analysis of
the Reaction Products. The final mixtures were analyzed by
reversed-phase HPLC with detection at 230 nm. The chromatography
was performed on a Hewlett-Packard HP 1090 apparatus equipped with
a diode-array detector. A reverse-phase column was used (Hypersil® BDS
C18, 3µ, 50 × 4.6 mm) under an optimized binary
gradient acetonitrile/water, flow 1 mL/min. To validate
the analytical method, some products and starting materials were
characterized separately. The peaks were assigned to the corresponding
products by comparison to the retention time and UV profiles.
10
Spectral Data
for Compound 12a: 1H NMR (400 MHz, DMSO-d
6): δ = 7.47
(s, 5 H, Ph), 7.36 (d, J = 8.9
Hz, 1 H, CH-9), 7.33-7.28 (m, 2 H, CH-7 and CH-8), 7.20
(d, J = 8.8 Hz,
1 H, CH-6), 7.15 (d, J = 7.8
Hz, 1 H, CH-5), 5.90 (d, J = 7.8
Hz, 1 H, CH-4), 5.68 (s, 1 H, CH-3), 5.54 (s, 1 H, CH-10), 1.89
(br s, 3 H, CH-adamantane), 1.58 (br s, 6 H, CH2-adamantane),
1.47 (br s, 6 H, CH2-adamantane). 13C NMR
(100 MHz, DMSO-d
6): δ = 146.30,
132.49, 132.38, 129.35, 129.26, 129.06, 128.24, 127.30, 125.54,
125.52, 123.54, 123.05, 113.79, 112.74, 106.20, 59.74, 54.10, 52.77, 44.05,
43.50, 35.61, 28.97. MS (70 eV): m/z (%) = 444 (28) [M]+,
417 (14) [M - HCN]+,
282 (28), 265 (51), 135 (100), [C10H15]+.
11
Ugi I.
Bottner E.
Liebigs Ann. Chem.
1963,
670:
74
12a
Marchand E.
Morel G.
Tetrahedron
Lett.
1993,
34:
2319
12b
Gröbke K.
Weber L.
Mehlin F.
Synlett
1998,
661
12c
Nair V.
Vinod AU.
Rajesh C.
J.
Org. Chem.
2001,
66:
4427
12d
Shaabani A.
Teimouri MB.
Bijanzadeh HR.
Tetrahedron Lett.
2002,
43:
9151