References
1
Fuji K.
Kawabata T.
Chem.-Eur. J.
1998,
4:
373
For examples of memory of chirality
through enolate intermediates see:
2a
Kawabata T.
Yahiro K.
Fuji K.
J. Am.
Chem. Soc.
1991,
113:
9694
2b
Kawabata T.
Wirth T.
Yahiro K.
Suzuki H.
Fuji K.
J. Am. Chem.
Soc.
1994,
116:
10809
2c
Brewster AG.
Frampton CS.
Jayatissa J.
Mitchell MB.
Stoodley RJ.
Vohra S.
Chem. Commun.
1998,
299
2d
Betts MJ.
Pritchard RG.
Schofield A.
Stoodley RJ.
Vohra S.
J. Chem. Soc., Perkin Trans. 1
1999,
1067
2e
Kawabata T.
Suzuki H.
Nagae Y.
Fuji K.
Angew. Chem. Int. Ed.
2000,
39:
2155
2f
Kawabata T.
Chen J.
Suzuki H.
Nagae Y.
Kinoshita T.
Chancharunee S.
Fuji K.
Org. Lett.
2000,
2:
3883
2g
Brewster AG.
Jayatissa J.
Mitchell MB.
Schofield A.
Stoodley RJ.
Tetrahedron Lett.
2002,
43:
3919
On the chirality memory through
carbenium ion chemistry:
3a
Matsumura Y.
Shirakawa Y.
Satoh Y.
Umino M.
Tanaka T.
Maki T.
Onomura O.
Org. Lett.
2000,
2:
1689
3b
Wanyoike GN.
Onomura O.
Maki T.
Matsumura Y.
Org. Lett.
2002,
4:
1875
Radicals as reactive intermediates
in memory of chirality processes:
4a
Sauer S.
Schumacher A.
Barbosa F.
Giese B.
Tetrahedron Lett.
1998,
39:
3685
4b
Giese B.
Wettstein P.
Stähelin C.
Barbosa F.
Neuburger M.
Zehnder M.
Wessig P.
Angew.
Chem. Int. Ed.
1999,
38:
2586
4c
Buckmelter AJ.
Kim AI.
Rychnovsky SD.
J. Am. Chem. Soc.
2000,
122:
9386
4d
Griesbeck AG.
Kramer W.
Lex J.
Angew.
Chem. Int. Ed.
2001,
40:
577
4e
Griesbeck AG.
Kramer W.
Bartoschek A.
Schmickler H.
Org.
Lett.
2001,
3:
537
4f
Griesbeck AG.
Kramer W.
Lex J.
Synthesis
2001,
1159
5
Gerona-Navarro G.
Bonache MA.
Herranz R.
García-López MT.
González-Muñiz R.
J.
Org. Chem.
2001,
66:
3538
6
Oliveros L.
López P.
Minguillón C.
Franco P.
J. Liq. Chromatogr.
1995,
18:
1521
7 Column OL-389. Eluent: hexane/acetone
(96:4). Flow rate: 1.5 mL/min. UV detection at 220 nm.
Isomer 2a: t
R = 7.77 min.
Isomer 2b: t
R = 9.07
min.
8 A general procedure was as follows:
Compound 1 (83 mg, 0.19 mmol) was dissolved
in the corresponding solvent (0.7 mL) and treated, at r.t. and under
Ar atmosphere, with the appropriate base (0.28 mmol). The reaction
was monitored by TLC until complete disappearance of the starting material.
The solution was evaporated, redissolved in EtOAc, washed with H2O,
and dried over Na2SO4. After evaporation,
the resulting residue was purified on a silica gel column using
a gradient from 20 to 30% of EtOAc in hexane. The obtained
compound 2ab was directly evaluated by
chiral HPLC, or transformed into dipeptide derivatives 3a and 3b as described
(ref.
[5]
). For the phase transfer reactions, 3
equiv of NaOH and KOH, and 10 equiv of CsOH were respectively used.
9 BTPP: tert-Butylimino-tri(pyrrolidino)phosphorane. BEMP:
2-tert-Butylimino-2-diethylamino-1,3-dimethylperhydro1,3,2-diazaphosphorine.
10a
Schwesinger R.
Willaredt J.
Schlemper H.
Keller M.
Schmitt D.
Fritz H.
Chem.
Ber.
1994,
127:
2435
10b
O’Donnell MJ.
Delgado F.
Dominguez E.
de Blas J.
Scott WL.
Tetrahedron: Asymmetry
2001,
12:
821
11 Attempts to cyclize N-benzyl-N-chloroacetyl-l-Phe-O-t-Bu with DMAP resulted in the nucleophilic
attack of the reactive to the chloroacetyl derivative (compound 4, 90%, Figure 2), as previously
found for the cyclization of Trp analogues with DBU, see: Gerona-Navarro G.
Bonache MA.
Herranz R.
García-López MT.
González-Muñiz R.
Synlett
2000,
1249 .Selected data for compound 4: HPLC: t
R = 10.74
min [50:50, H2O/MeCN (0.05%TFA)]. 1H
NMR (300 MHz, CDCl3): major rotamer δ = 8.09
(d, 2 H, J = 7.8
Hz, pyridine), 7.32-7.12 (m, 10 H, Ph), 6.68 (d, 2 H, J = 7.8 Hz, pyridine),
5.46 (d, 1 H, J = 16.8
Hz, CH2N+), 5.33 (d, 1 H, J = 16.8 Hz,
CH2N+), 4.72 (d, 1 H, J = 17.2 Hz,
N-CH2), 4.39 (dd, 1 H, J = 8.8,
6.2 Hz, α-H), 4.25 (d, 1 H, J = 17.2 Hz,
N-CH2), 3.25 (dd, 1 H, J = 14.9,
6.2 Hz, β-H), 3.17 (s, 6 H, NMe2), 3.07 (dd,
1 H, J = 14.9,
8.8 Hz, β-H), 1.31 (s, 9 H, t-Bu). 13C
NMR (75 MHz, CDCl3): major rotamer δ = 168.29
(COO), 166.07 (CON), 156.34 (4-C, pyridine), 143.68 (2-C, 6-C, pyridine),
137.35, 135.32, 129.29, 128.91, 128.86, 127.91, 127.59, 126,79 (Ph),
107.14 (3-C, 4-C, pyridine), 82.22 (C, t-Bu),
63.09 (α-C), 58.71 (CH2N+), 51.41
(N-CH2), 40.48 (CH3N), 35.53 (β-C),
27.92 (CH3, t-Bu). MS (ES,
positive mode): 475.6 (M+ + 1)
12 Reaction of chloroacetyl derivative 1 with LHMDS afforded pyrrolidinone 5, which was characterized as its methoxy derivative 6 after treatment with diazomethane. The formation
of compound 5 could be attributed to the
initial generation of the amide enolate and a Dieckmann-type condensation
of this enolate with the ester group, followed by enolisation of
the resulting ketone (Figure
[3]
).
Selected
data for compound 6: 1H
NMR (300 MHz, CDCl3): δ = 7.26 (m,
3 H, Ph), 7.05 (m, 2 H, Ph), 7.00 (d, 2 H, J = 8.6 Hz,
Pmb), 6.80 (d, 2 H, J = 8.6
Hz, Pmb), 5.18 (d, 1 H, J = 15.1
Hz, 1-CH2), 4.16 (s, 3 H, OMe), 3.93 (dd, 1 H, J = 5.4, 4.1
Hz, 5-H), 3.83 (d, 1 H, J = 15.1
Hz, 1-CH2), 3.78 (s, 3 H, OMe), 3.13 (dd, 1 H, J = 14.3,
4.1 Hz, 5-CH2), 2.89 (dd, 1 H, J = 14.3,
5.4 Hz, 5-CH2). 13C NMR
(75 MHz, CDCl3): δ = 167.4 (2-C), 164.22
(4-C), 159.07, 134.95, 130.05, 129.45, 129.04, 128.74, 127.32, 114.03
(Ar), 97.91 (3-C), 59.05 (OMe), 58.65 (5-C), 55.21 (OMe), 43.88
(5-CH2),
35.47 (1-CH2). MS (ES, positive mode): 358.2
(M+ + 1).
13 These results are atypical with
respect to other alkylation reactions for which the use of polar
solvents, like MeCN, resulted in almost racemic products: Belokon YN.
Kochetkov KA.
Churkina TD.
Ikonnikov NS.
Chesnokov AA.
Larionov OV.
Singh I.
Parmar VS.
Vyskocil S.
Kagan HB.
J. Org. Chem.
2000,
65:
7041
14a
Taft RW.
Kamlet MJ.
J.
Am. Chem. Soc.
1976,
98:
2886
14b
Kamlet MJ.
Abboud JL.
Taft RW.
J. Am. Chem. Soc.
1977,
99:
6027
15 NMP was not included because really
poor correlations were found. To the best of our knowledge, the
AN value for 2-butanone has not been described.
16a
Taft RW.
Pienta NJ.
Kamlet MJ.
Arnett EM.
J. Org. Chem.
1981,
46:
661
16b
Malavolta L.
Oliveira E.
Cilli EM.
Nakaie CR.
Tetrahedron
2002,
58:
4383
17 Among all the solvents tested here,
NMP has not only the highest donor number (DN) but also the biggest
difference between AN and DN parameters. DN is a reasonably good measure
of the ability of the solvent to serve as an electron-pair donor
to solutes when oxygen bases are considered.
It has been described that the
enantioselectivity of the alkylation of Phe derivatives can be controlled
by regulating the aggregate structure of chiral enolate intermediates:
18a
Kawabata T.
Kawakami S.
Fuji K.
Tetrahedron
Lett.
2002,
43:
1465
18b
Kawabata T.
Kawakami S.
Shimada S.
Fuji K.
Tetrahedron
2003,
59:
965
19a
Henderson KW.
Dorigo AE.
Liu Q.-Y.
Williard PG.
von Ragué Scheyer P.
Bernstein PR.
J. Am. Chem. Soc.
1996,
118:
1339
19b
Asensio G.
Alemán PA.
Domingo LR.
Medio-Simón M.
Tetrahedron
Lett
1998,
39:
3277
20 No memeory of chriality was observed
in the photochmically-induced cyclization of phenylglyoxylamide to
3-hydroxy-β-lactams: Griesbeck AG.
Heckroth H.
Synlett
2002,
131