References
1a
Nagel M.
Hansen H.-J.
Fráter G.
Synlett
2002,
275
1b
Nagel M.
Hansen H.-J.
Fráter G.
Synlett
2002,
280
For leading references see:
2a
Lomas JS.
Acc. Chem. Res.
1988,
21:
73
2b
Rüchardt C.
Beckhaus H.-D.
Angew. Chem.,
Int. Ed. Engl.
1980,
429
2c
Rüchardt C.
Beckhaus H.-D.
Angew.
Chem. Int. Ed. Engl.
1985,
529
3
Cram DJ.
Steinberg H.
J. Am. Chem. Soc.
1951,
73:
5691
4 1-Phenylcycloalkanols 1 were
synthesized from the corresponding cycloalkanones by addition of
phenyl lithium or phenyl magnesium bromide according to ref. 9.
5a Thermo-isomerization
reactions were performed in a flow reactor system using a quartz
tube (110 cm length, and 3 cm i.d., respectively) heated by a tube
furnace (100 cm with 6 different temperature zones, which can be
separately adjusted).
5b Typical procedure: After
evacuation of the apparatus with a high-vacuum oil pump, the starting
material (0.5-5 g) was directly distilled through the preheated
reactor tube (estimated contact times: about 1-2 s). A
flow of nitrogen gas was adjusted from 12 mL/min to 24
mL/min (0.8-2.4 L/h). At the end of the
reactor unit the isomerization products were collected in a trap,
which was cooled with liquid N2 (90-95% recovery).
5c For details refer to: Nagel M.
Fráter G.
Hansen H.-J.
Chimia
2003,
57:
196
6a
Meyers CY.
Hou Y.
Lutfi HG.
Saft HL.
J.
Org. Chem.
1999,
64:
9444
6b
Jacyno JM.
Harwood JS.
Cutler HG.
Deanne M.
Tetrahedron
1994,
50:
11585
7 Deuterium content was determined by
mass spectroscopy.
8
Hungerford NL.
Kitching W.
J. Chem. Soc., Perkin Trans.1
1998,
11:
1839
9
Dimitrov V.
Brabantov S.
Simova S.
Kostova K.
Tetrahedron Lett.
1994,
35:
6713
10 Deuterium content was determined by 1H
NMR spectroscopy, chemical shifts were determined by 2H
NMR spectroscopy.
11 2,2,12,12,12-d
5-4g: 1H NMR (300 MHz,
CDCl3): δ
(ppm) = 7.95 (dt, J = 7.0 Hz, 1.2 Hz, 2 H), 7.55
(tt, J = 7.3 Hz, 1.3 Hz, 1 H),
(tt, J = 7.2 Hz, 1.3 Hz, 2 H),
1.72 (t, J = 7.1 Hz, 2 H), 1.59-1.26
(m, 14 H). 13C NMR (75 MHz, CDCl3): δ (ppm) = 200.47
(C), 137.04 (C), 132.71 (CH), 128.42 (CH), 127.95 (CH), 31.71 (CH2),
29.49 (CH2), 29.37 (CH2), 29.27 (CH2),
29.22 (CH2), 29.21 (CH2), 29.20 (CH2),
24.23 (CH2), 22.42 (CH2). IR (CHCl3):
3063 (vw), 2929 (vs), 2856 (vs), 1679 (s), 1599 (w), 1581 (w), 1467
(w), 1448 (m), 1272 (s)cm-1. MS m/z (rel
intensity) 266 (12), 265 (20), 135 (9), 121 (100), 105 (78).
12 Intermolecular processes can be excluded
under DGPTI-conditions.
13a
Mori H.
Ikoma K.
Isoe S.
Kitaura K.
Katsumura S.
J. Org. Chem.
1998,
63:
8704
13b
Casanova J.
Waegell B.
Bull. Soc. Chim. Fr.
1971,
4:
1289
14
Foehlisch B.
Joachimi R.
Chem. Ber.
1987,
120:
1951
15a
Gautier AE.
Ph.D.
Thesis
ETH Zürich;
Switzerland:
1980.
15b
Townsend CA.
Scholl T.
Arigoni D.
J. Chem. Soc., Chem. Commun.
1975,
921
16
Koch SSC.
Chamberlin AR.
Synth.
Commun.
1989,
19:
829
17a
Avery TD.
Fallon G.
Greatrex BW.
Pyke SM.
Taylor DK.
Tiekink ERT.
J. Org. Chem.
2001,
66:
7955
17b
Zhang F.-J.
Corey EJ.
Org. Lett.
2000,
2:
1097
17c
Ollis WD.
Rey M.
Sutherland IO.
J. Chem. Soc., Perkin Trans.1
1983,
1009