Aktuelle Neurologie 2003; 30(5): 209-214
DOI: 10.1055/s-2003-39961
Neues in der Neurologie
© Georg Thieme Verlag Stuttgart · New York

Neue Therapien in der Neurorehabilitation

New Therapies in NeurorehabilitationJ.  Liepert1
  • 1Neurologische Klinik, Universitätskliniken Eppendorf, Hamburg
Herrn Prof. Dr. C. Weiller danke ich für die kritische Durchsicht des Manuskriptes
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Juni 2003 (online)

Zusammenfassung

Schlaganfallpatienten sind auch Jahre nach dem Ereignis in hohem Prozentsatz in ihrer motorischen Funktion beeinträchtigt. Neben den seit Jahrzehnten bekannten physiotherapeutischen Verfahren wurden in den letzten Jahren verschiedene neue Ansätze entwickelt. Diese Übersicht stellt insbesondere den forcierten Gebrauch, das bilaterale Armtraining, roboterunterstützte Therapien, afferenzenassoziiertes Training und den Einsatz von Pharmaka zur Optimierung der motorischen Rehabilitation vor.

Abstract

Even years after a stroke a large number of patients still suffer from motor impairment. In recent years some new motor rehabilitation techniques have emerged. This review focusses on forced use treatments, bilateral arm training, robot-assisted sensorimotor therapies, modulations of afferent input and drugs that might promote motor rehabilitation.

Literatur

  • 1 Dijkerman H C, Wood V A, Hewer R L. Long-term outcome after discharge from a stroke rehabilitation unit.  J R Coll Physicians Lond. 1996;  30 538-546
  • 2 Broeks J G, Lankhorst G J, Rumping K, Prevo A J. The long-term outcome of arm function after stroke: results of a follow-up study.  Disabil Rehabil. 1999;  21 357-364
  • 3 Taub E. Somatosensory deafferentation research with monkeys: implications for rehabilitation medicine. In: Ince LP (ed) Behavioral Psychology in Rehabilitation Medicine: Clinical applications. New York, NY; Williams & Wilkins 1980: 371-401
  • 4 Bauder H, Taub E, Miltner W HR. Behandlung motorischer Störungen nach Schlaganfall. Die Taubsche Bewegungsinduktionstherapie. Göttingen, Bern, Toronto, Seattle; Hogrefe Verlag 2001
  • 5 Ostendorf C G, Wolf S L. Effect of forced use of the upper extremity of a hemiplegic patient on changes in function: a single-case design.  Phys Ther. 1981;  61 1022-1028
  • 6 Wolf S L, Lecraw D E, Barton L A, Jann B B. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients.  Exper Neurol. 1989;  104 125-132
  • 7 Taub E, Crago J E, Uswatte G. Constraint-induced movement therapy: a new approach to treatment in physical rehabilitation.  Rehabil Psychol. 1998;  43 152-170
  • 8 Taub E, Miller N E, Novack T A. et al . Technique to improve chronic motor deficit after stroke.  Arch Phys Med Rehabil. 1993;  74 347-354
  • 9 Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation - a clinical review.  J Rehabil Res. 1999;  36 237-251
  • 10 Van der Lee J H, Wagenaar R C, Langhorst G J. et al . Forced use of the upper extremity in chronic stroke patients.  Stroke. 1999;  30 2369-2375
  • 11 Kunkel A, Kopp B, Müller G. et al . Constraint-induced movement therapy for motor recovery in chronic stroke patients.  Arch Phys Med Rehabil. 1999;  80 624-628
  • 12 Miltner W HR, Bauder H, Sommer M. et al . Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke.  Stroke. 1999;  30 586-592
  • 13 Blanton S, Wolf S L. An application of upper-extremity constraint-induced movement therapy in a patient with subacute stroke.  Phys Ther. 1999;  79 847-853
  • 14 Peter C, Leidner O. Forced use therapy in the rehabilitation of hemiparetic patients - a modification for clinical practise.  Neurol Rehabil. 1997;  3 137-144
  • 15 Dromerick A W, Edwards D F, Hahn M. Does application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?.  Stroke. 2000;  31 2984-2988
  • 16 Liepert J, Miltner W HR, Bauder H. et al . Motor cortex plasticity during constraint-induced movement therapy in stroke patients.  Neurosci Lett. 1998;  250 5-8
  • 17 Liepert J, Bauder H, Miltner W HR. et al . Treatment-induced cortical reorganization after stroke in humans.  Stroke. 2000;  31 1210-1216
  • 18 Liepert J, Bauder H, Miltner W HR. et al . Therapie-induzierte kortikale Reorganisation bei Schlaganfallpatienten.  Neurol Rehabil. 2000;  6 177-183
  • 19 Liepert J, Uhde I, Gräf S. et al . Motor cortex plasticity during forced use therapy in stroke patients.  J Neurol. 2001;  248 315-321
  • 20 Levy C E, Nichols D S, Schmalbrock P M. et al . Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy.  Am J Phy Med Rehabil. 2001;  80 4-12
  • 21 Nelles G, Jentzen W, Jueptner M. et al . Arm training induced brain plasticity in stroke studied with serial positron emission tomography.  Neuroimage. 2001;  13 1146-1154
  • 22 Whitall J, Waller S, Silver K, Macko R. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke.  Stroke. 2000;  31 2390-2395
  • 23 Mudie M H, Matyas T A. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke?.  Disabil Rehabil. 2000;  22 23-37
  • 24 Mudie M H, Matyas T A. Responses of the densely hemiplegic upper extremity to bilateral training.  Neurorehabil Neural Repair. 2001;  15 129-140
  • 25 Cauraugh J H, Kim S. Two coupled motor recovery protocols are better than one. Electromyogram-triggered neuromuscular stimulation and bilateral movements.  Stroke. 2002;  33 1589-1594
  • 26 Platz T, Bock S, Prass K. Reduced skillfulness of arm motor behaviour among motor stroke patients with good clinical recovery: does it indicate reduced automaticity? Can it be improved by unilateral or bilateral training? A kinematic motion analysis study.  Neuropsychologia. 2001;  39 687-698
  • 27 Staines W R, McIlroy W E, Graham S J, Black S E. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study.  Neurology. 2001;  56 401-404
  • 28 Andersen B, Rosler K M, Lauritzen M. Nonspecific facilitation of responses to transcranial magnetic stimulation.  Muscle Nerve. 1999;  22 857-863
  • 29 Stinear C M, Walker K S, Byblow W D. Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles.  Exp Brain Res. 2001;  139 101-105
  • 30 Aisen M L, Krebs H I, Hogan N. et al . The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke.  Arch Neurol. 1997;  54 443-446
  • 31 Volpe B T, Krebs H I, Hogan N. et al . Robot training enhanced motor outcome in patients with stroke maintained over 3 years.  Neurology. 1999;  53 1874-1876
  • 32 Volpe B T, Krebs H I, Hogan N. et al . A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation.  Neurology. 2000;  54 1938-1944
  • 33 Lum P S, Burgar C G, Shor P C. et al . Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke.  Arch Phys Med Rehabil. 2002;  83 952-959
  • 34 Rose L, Bakal D A, Fung T S. et al . Tactile extinction and functional status after stroke. A preliminary investigation.  Stroke. 1994;  25 1973-1976
  • 35 Reding M, Potes E. Rehabilitation outcome following initial unilateral hemispheric stroke. Life table analysis approach.  Stroke. 1988;  19 1354-1358
  • 36 Rood M S. Neurophysiological mechanisms utilized in treatment of neuromuscular dysfunction.  Am J Occup Ther. 1956;  10 220-224
  • 37 Dannenbaum R M, Dykes R W. Sensory loss in the hand after sensory stroke: therapeutic rationale.  Arch Phys Med Rehabil. 1988;  69 833-839
  • 38 Carey L M, Matyas T A, Oke L E. Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination.  Arch Phys Med Rehabil. 1993;  74 602-611
  • 39 Yekutiel M, Guttman E. A controlled trial of the retraining of the sensory function of the hand in stroke patients.  J Neurol Neurosurg Psychiatry. 1993;  56 241-244
  • 40 Dimitrijevic M M, Stokic D S, Wawro A W, Wun C C. Modification of motor control of wrist extension by mesh-glove electrical afferent stimulation in stroke patients.  Arch Phys Med Rehabil. 1996;  77 252-258
  • 41 Conforto A B, Kaelin-Lang A, Cohen L G. Increase in hand muscle strength of stroke patients after somatosensory stimulation.  Ann Neurol. 2002;  51 122-125
  • 42 Ridding M C, Brouwer B, Miles T S. et al . Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects.  Exp Brain Res. 2000;  131 135-143
  • 43 Kaelin-Lang A, Luft A R, Sawaki L. et al . Modulation of human corticomotor excitability by somatosensory input.  J Physiol. 2002;  540 623-633
  • 44 Heldmann B, Kerkhoff G, Struppler A. et al . Repetitive peripheral magnetic stimulation alleviates tactile extinction.  Neuroreport. 2000;  11 3193-3198
  • 45 Müllbacher W, Richards C, Ziemann U. et al . Improving hand function in chronic stroke.  Arch Neurol. 2002;  59 1278-1282
  • 46 Ziemann U, Hallett M, Cohen L G. Mechanisms of deafferentation-induced plasticity in human motor cortex.  J Neurosci. 1998;  18 7000-7007
  • 47 Goldstein L B. Common drugs may influence motor recovery after stroke.  Neurology. 1995;  45 865-871
  • 48 Crisostomo E A, Duncan P W, Probst M. et al . Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients.  Ann Neurol. 1988;  23 94-97
  • 49 Walker-Batson D W, Smith P, Curtis S. et al . Amphetamine paired with physical therapy accelerates motor recovery after stroke.  Stroke. 1995;  26 2254-2259
  • 50 Grade C, Redford B, Chrostowski J. et al . Methylphenidate in early poststroke recovery: a double-blind, placebo-controlled study.  Arch Phys Med Rehabil. 1998;  79 1047-1050
  • 51 Gainotti G, Antonucci G, Marra C, Paolucci S. Relation between depression after stroke, antidepressant therapy, and functional recovery.  J Neurol Neurosurg Psychiatry. 2001;  71 258-261
  • 52 Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a perspective, randomized, double-blind study.  Lancet. 2001;  358 787-790
  • 53 Dam M, Tonin P, De Boni A. et al . Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy.  Stroke. 1996;  27 1211-1214
  • 54 Pariente J, Loubinoux I, Carel C. et al . Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.  Ann Neurol. 2001;  50 718-729
  • 55 Van Kuijk A A, Geurts A C, Bevaart B J, van Limbeek J. Treatment of upper extremity spasticity in stroke patients by focal neuronal or neuromuscular blockade: a systematic review of the literature.  J Rehabil Med. 2002;  34 51-61
  • 56 Panizza M, Castagna M, di Summa A. et al . Functional and clinical changes in upper limb spastic patients treated with botulinum toxin (BTX).  Funct Neurol. 2000;  15 147-155
  • 57 Pandyan A D, Vuadens P, van Wijck F M. et al . Are we underestimating the clinical efficacy of botulinum toxin (type A)?.  Clin Rehabil. 2002;  16 654-660
  • 58 Rousseaux M, Kozlowski O, Froger J. Efficacy of botulinum toxin A in upper limb function of hemiplegic patients.  J Neurol. 2002;  249 76-84
  • 59 Brashear A, Gordon M F, Elovic E. et al . Botox Post-Stroke Spasticity Study Group. Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after a stroke.  N Engl J Med. 2002;  347 395-400
  • 60 Bakheit A M, Pittock S, Moore A P. et al . A randomized double-blind placebo-controlled study of the efficacy and safety of botulinum toxin type A in upperlimb spasticity in patients with stroke.  Eur J Neurol. 2001;  8 558-565

PD Dr. J. Liepert

Neurologische Klinik · UKE

Martinistraße 52

20246 Hamburg

eMail: liepert@uke.uni-hamburg.de

    >