Zusammenfassung
Obwohl die klinische Wirksamkeit der in der gegenwärtigen Therapie der sporadischen AK eingesetzten Pharmaka ausreichend belegt erscheint, sind ihre Wirkungsmechanismen weit weniger gut bekannt oder werden bei der Beurteilung der klinischen Effekte außer Acht gelassen. Es erscheint jedoch unumgänglich, klinische Wirkung und Wirkungsmechanismen von Pharmaka zu kennen, um ihren Schaden und Nutzen zu beurteilen. Hinsichtlich der bei der sporadischen AK in der Bundesrepublik Deutschland zur Anwendung kommenden Pharmaka zeigen sich völlig unterschiedliche Wirkungsmechanismen. Unter Berücksichtigung der dargestellten Pathomechanismen, die bei sporadischer AK in unterschiedlicher Weise bekannt geworden sind, ergibt sich eine therapeutische Rationale für einen Einsatz von Ginkgo-biloba-Extrakt (EGb 761) und Memantin. Die Anwendung von Azetylcholinesterasehemmern, die vielfach als Mittel der Wahl angesehen werden, ist wegen der Gefahr des Auftretens myopathischer Störungen bzw. des Gulf-War-Syndroms als kritisch zu betrachten. Als viel versprechend apostrophierte und vorschnell propagierte Therapiestrategien mit Statinen oder Vaccination gegen βA4 sollten wegen fehlender Angriffspunkte im bekannten pathophysiologischen Schädigungsmuster der sporadischen AK nicht angewendet werden. Zukünftige Entwicklungen müssten berücksichtigen, dass bei der sporadischen AK nicht oder nur schwer zu therapierende Alterseinflüsse vorliegen. Therapieziele sollten in der Verbesserung des zellulären Energiestatus und der Membranfunktion bestehen.
Abstract
Even though the clinical effectiveness of the presently used pharmaceutical therapy of sporadic Alzheimer Disease seems to be proven sufficient, their effective mechanisms are much less known or are disregarded in the evaluation of the clinical effects. However, it seems to be inevitable to know both clinical effect and effective mechanisms of pharmaceutics in order to be able to judge their adversity and benefit. In reference to the pharmaceutics implemented on sporadic AD in Germany, total different effective mechanisms are shown. In consideration of the shown pathomechanisms which have been recognized for sporadic AD, therapeutic rationales on application of Ginkgo biloba extract (EGb 761) and Memantine are evident. The application of acetylcholinesterase inhibitors, often looked on as agent of choice, is to be considered critically because of the danger of the occurrence of myopathical dysfunction, resp. the Gulf War Syndrome. Sophisticated and hastily advertised therapy strategies with statines or vaccination against βA4 should not be used because of a lack of sufficient evidence based on the pathophysiological pattern of damage as known in sporadic AD. Future development must take in account that with sporadic AD aging influences cannot or can hardly be influenced. Therapeutic goals should consist to improve the cellular energy status and the membrane functioning.
Literatur
1
Pericak-Vance M, Haines J L.
Genetic susceptibility to Alzheimer disease.
Trends Genet.
1995;
11
504-508
2
Tilley L, Morgan K, Kalsheker N.
Genetic risk factors in Alzheimer's disease.
J Clin Pathol Mol Pathol.
1998;
51
293-304
3
Pericak-Vance M A, Grubber J, Baily L R, Hedges D, West S, Santoro L, Kemmerer B, Hall J L, Saunders A M, Roses A D. et al .
Identification of novel genes in late-onset Alzheimer's disease.
Exp Geront.
2000;
35
1343-1352
4
Holness M J, Langdown M L, Sugden M C.
Early-life programming of susceptibility to dysregulation of glucose metabolism and the development of type 2 diabetes mellitus.
Biochem J.
2000;
349
657-665
5
Hardy J.
Amyloid, the presenilins and Alzheimer's disease.
Trends Neurosci.
1997;
20
154-159
6
Selkoe D J.
Alzheimer's disease: genotypes, phenotype, and treatment.
Science.
1997;
275
630-631
7
Joseph J, Shukitt-Hale B, Denisova N A, Martin A, Perry G, Smith M A.
Copernicus revisited: amyloid beta in Alzheimer's disease.
Neurobiol Aging.
2001;
22
131-146
8
Bancher C, Jellinger K, Lassmann H, Fischer P, Leblhuber F.
Correlations between mental state and quantitative neuropathology in the Vienna Prospective Longitudinal Study on Dementia.
Eur Arch Psychiatry Clin Neurosci.
1996;
246
137-146
9
Bennett D A, Cochran E J, Saper C B, Leverenz J B, Gilley D W, Wilson R S.
Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer's disease.
Neurobiol Aging.
1993;
14
589-596
10
Perry E K, Perry R H, Tomlinson B E, Blessed G, Gibson P H.
Coenyzm A-acetylating enzymes in Alzheimer's disease: possible cholinergic “compartment” of pyruvate dehydrogenase.
Neurosci Lett.
1980;
18
105-110
11
Drachman D A, Noffsinger D, Sahakian B J, Kurdziel S, Fleming P.
Aging, memory and the cholinergic system: a study of dichotic listening.
Neurobiol Aging.
1980;
1
39-43
12
Michikawa M, Yanagisawa K.
Inhibition of cholesterol production but not of nonsterol isoprenoid products induces neuronal cell death.
J Neurochem.
1999;
72
2278-2285
13
Pettegrew J W, Klunk W E, Panchalingam K, McCLure R J, Stanley J A.
Molecular insights into neurodevelopmental and neurodegenerative diseases.
Brain Res Bull.
2000;
53
455-469
14
Rupprecht R, Holsboer F.
Neuroactive steroids: mechanism of action and neuropharmacological perspectives.
Trends Neurosci.
1999;
22
410-416
14a
Dietschy J M, Rürley S D.
Cholesterol metabolism in the brain.
Curr Op Lipidol.
2001;
12
106-112
14b
Schönknecht P, Lütjohann D, Pantel J, Bardenheuer H, Hartmann T, Bergmann K von, Beyreuther K, Schröder J.
Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer's disease compared to healthy controls.
Neurosci Lett.
2002;
324
83-85
15
Chang W J, Rothberg G K, Kamen B A, Anderson R G.
Lowering the cholesterol content of MA 104 cells inhibits receptor-mediated transport by folate.
J Cell Biol.
1992;
118
63-69
16
Schnitzer J E, Oh P, Pinney E, Allard J.
Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis and capillary permeability of select macromolecules.
J Cell Biol.
1994;
127
1217-1232
17
Smith R M, Harada S, Smith J A, Zhang S, Jarett L.
Insulin-induced protein tyrosine phosphorylation cascade and signalling molecules are localized in a caveolin-enriched cell membrane domain.
Cell Signal.
1998;
10
355-362
18
Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson K H, Magnusson K E, Stralfors P.
Localization of the insulin receptor in caveolae of adipocyte plasma membrane.
FASEB J.
1999;
13
1961-1971
19
Mauch D H, Nägler K, Schumacher S, Göritz E C, Otto A, Pfrieger F W.
CNS synaptogenesis promoted by glia-derived cholesterol.
Science.
2001;
294
1354-1357
20 Hoyer S, Frölich L, Sandbrink R. Molekulare Medizin der Alzheimer Krankheit. In: Ganten D, Ruckpaul K (Hrsg.). Handbuch der molekularen Medizin, Bd. 5: Erkrankungen des Zentralnervensystems. Berlin-Heidelberg: Springer 1999: 195-236
21
Müller W E, Mutschler E, Riederer P.
Noncompetitive NMDA Receptor Antagonists with Fast Open-Channel Blocking Kinetics and Strong Voltage-Dependency as Potential Therapeutic Agents for Alzheimer's Dementia.
Pharmacopsychiat.
1995;
28
113-124
22
Henneberg N, Hoyer S.
Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)?.
Arch Gerontol Geriatr.
1995;
21
63-74
23
Hoyer S.
The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: An update.
J Neural Transm.
2002;
109
341-360
23a
Bernstein H G, Ansorge S, Riederer P, Reiser M, Frölich L, Bogerts B.
Insulin-degrading enzyme in the Alzheimer's disease brain: prominent localization in neurons and senile plaques.
Neurosci Letters.
1999;
263
161-164
24
Abbott M A, Wells D G, Fallon J R.
The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses.
J Neurosci.
1999;
19
7300-7308
25
Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon M J, Alkon D L.
Brain insulin receptors and spatial memory.
J Biol Chem.
1999;
274
34 893-34 902
26
Solano D J, Sironi M, Bonfini C, Solerte B, Govoni S, Racchi M.
Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway.
FASEB J.
2000;
14
1015-1022
27
Gasparini L, Gouras G K, Wang R, Gross R S, Beal M F, Greengard P, Xu H.
Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneural β-amyloid and requires mitogen-activated protein kinase signaling.
J Neurosci.
2001;
21
2561-2570
28
Hoyer S.
Senile dementia and Alzheimer's disease: brain blood flow and metabolism.
Prog Neuropsychopharmacol Biol Psychiatry.
1986;
10
447-478
29
Salehi M, Hodgkins B J, Merry B J, Goyns M H.
Age-related changes in gene expression in the rat brain revealed by differential display.
Experientia.
1996;
52
888-891
30
Wu H C, Lee E HY.
Identification of a rat brain gene associated with aging by PCR differential display method.
J Mol Neurosci.
1997;
8
13-18
31
Jiang C H, Tsien J Z, Schultz P G, Hu Y.
The effects of aging on gene expression in the hypothalamus and cortex of mice.
Proc Natl Acad Sci USA.
2001;
98
1930-1934
32
Hoyer S.
The effect of age on glucose and energy metabolism in brain cortex of rats.
Arch Gerontol Geriatr.
1985;
4
193-203
33
Bowen D M.
Cellular aging: selective vulnerability of cholinergic neurons in human brain.
Monogr Dev Biol.
1984;
17
42-59
34
Harik S I, McCracken K A.
Age-related increase in presynaptic noradrenergic markers of the rat cerebral cortex.
Brain Res.
1986;
381
125-130
35
Perego C, Vetrugno C C, De Simono M G, Algeri S.
Aging prolongs the stress-induced release of noradrenaline in rat hypothalamus.
Neurosci Lett.
1993;
157
127-130
36
Frölich L, Blum-Degen D, Bernstein H G, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Türk A, Hoyer S. et al .
Insulin and insulin receptors in the brain in aging and sporadic Alzheimer's disease.
J Neural Transm.
1998;
105
423-438
37
Swaab D F, Raadsheer F C, Endert E F, Hofman M A, Kamphorst W C, Ravid R.
Increases in cortisol levels in aging and Alzheimer's disease in postmortem cerebrospinal fluid.
J Neuroendocrinol.
1994;
6
681-687
38
Söderberg M, Edlund C, Kristensson K, Dallner G.
Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease.
Lipids.
1991;
26
412-425
39
Igbavboa U, Avdulov A, Schröder F, Wood W G.
Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice.
J Neurochem.
1996;
66
1717-1725
40
Wurtman R J.
Choline metabolism as a basis for the selective vulnerability of cholinergic neurons.
Trends Neurosci.
1992;
15
117-122
41
Subbarao K V, Richardson J S, Hug L C.
Autopsy samples of Alzheimer's cortex show increased lipid perpidation in vitro.
J Neurochem.
1990;
55
342-345
42
Mesulam M M.
Neuroplasticity failure in Alzheimer's disease. bridging the gap between plaques and tangles.
Neuron.
1999;
24
521-529
43
Bak P, Tang C, Wiesenfeld K.
Self-organized criticality.
Phys Rev A.
1988;
38
364-374
44
Held G A, Solina D H, Keane D T, Haag W J, Horn P M, Grinstein G.
Experimental study of critical-mass fluctuations in an evolving sandpile.
Physic Rev Lett.
1990;
69
1120-1123
45
Hoyer S, Nitsch R, Oesterreich K.
Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross sectional comparison against advanced late-onset and incipient early-onset cases.
J Neural Transm (P-D Sect).
1991;
3
1-14
46
Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimua J, Yonekura Y, Konichi J.
Altered cerebral energy metabolism in Alzheimer's disease: a PET study.
J Nucl Med.
1994;
35
1-6
47
Peskind E R, Elrod R, Dobie D J, Pascualy M, Petrie E, Jensen C, Brodkin M, Murray S, Veith R C, Raskind M A.
Cerebrospinal fluid nonepinephrine in Alzheimer's disease and normal aging.
Neuropsychopharmacology.
1998;
19
465-471
48
Hoyer S.
Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update.
Exp Gerontol.
2000;
35
1363-1372
49
Hoyer S.
Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis.
J Neural Transm.
1988;
105
415-422
50
Hong M, Lee V MY.
Insulin and insulin-like growth factor-1 regulate τ phosphorylation in cultured human neurons.
J Biol Chem.
1997;
272
19 547-19 553
51
Mandelkow E M, Drewes G, Biernat J, Gustke N, Lint J van, Vandenheede J R, Mandelkow E.
Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein τ.
FEBS Lett.
1992;
314
315-321
52
Münch G, Schinzel R, Loske C, Wong A, Durany N, Li J J, Vlassara H, Smith M A, Perry G, Riederer P.
Alzheimer's disease-synergistic effects of glucose deficit, oxidative stress and advanced glycation end products.
J Neural Transm.
1998;
105
439-461
53
Sims N R, Bowen D M, Neary D, Davison A N.
Metabolic processes in Alzheimer's disease: adenine nucleotide content and production of 14 C02 from (U14 C) glucose in vitro in human neocortex.
J Neurochem.
1983;
41
1329-1334
54
Hoyer S.
Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases.
Mol Chem Neuropathol.
1992;
16
207-224
55
Gibson G E, Jope R, Blass J P.
Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces.
Biochem J.
1975;
148
17-23
56
Sims N R, Bowen D M, Davison A N.
(14 C) acetylcholine synthesis and (14 C) carbon dioxide productin from (U 14 C) glucose by tissue prisms from human neocortex.
Biochem J.
1981;
196
867-876
57
Münch G, Lüth H J, Wong A, Arendt Th, Hirsch E, Ravid R, Riederer P.
Crosslinking of α-synuclein by advanced glycation endproducts - an early pathophysiological step in Lewy body formation?.
J Chem Neuroanat.
2000;
20
253-257
58
Buttgereit F, Brand M D.
A hierarchy of ATP-consuming processes in mammalian cells.
Biochem J.
1995;
312
163-167
59
Röder H M, Ingram V M.
Two novel kinases phosphorylate τ and the KSP site of heavy neurofilament subunits in high stoichiometric ratios.
J Neurosci.
1991;
11
3325-3343
60
Bush M L, Niyashiro J S, Ingram V M.
Activation of a neurofilament kinase, a τ kinase and a τ phosphatase by decreased ATP levels in nerve growth factor-differentiated PC 12 cells.
Proc Natl Acad Sci USA.
1995;
92
1962-1965
61
Wilson C A, Doms R W, Lee V MY.
Intracellular APP processing and Aβ production in Alzheimer disease.
J Neuropathol Exp Neurol.
1999;
58
787-794
62
Gouras G K, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield J P, Haroutunian V, Buxbaum J D, Xu H, Greengard P, Relkin N R.
Intraneural Aβ42 accumulation in human brain.
Am J Pathol.
2000;
156
15-20
63
Nitsch R M, Rebeck G W, Deng M, Richardson U I, Tennis M, Schenk D B, Vigo-Pelfrey C, Lieberburg I, Wurtman R J, Hyman B T, Growdon J H.
Cerebrospinal fluid levels of amyloid beta-protein in Alzheimer's disease: inverse correlation with severity of dementia and effect of apolipoprotein E genotype.
Ann Neurol.
1995;
37
512-518
64
Schröder J, Pantel J, Ida N, Essig M, Hartmann T, Knopp M V, Schad L R, Sandbrink R, Sauer H, Masters C L, Beyreuther K.
Cerebral changes and cerebrospinal fluid β-amyloid in Alzheimer's disease: a study with quantitative magnetic resonance imaging.
Mol Psychiatry.
1997;
2
505-507
65
Kanai M, Matsubara E, Isoe K, Urakami K, Nakashima K, Arai H, Sasaki H, Abe K, Iwatsubo T, Kosaka T. et al .
Longitudinal study of cerebrospinal fluid levels of τ, Aβ1 - 40, and Aβ1 - 42 (43) in Alzheimer's disease: A study in Japan.
Ann Neurol.
1998;
44
17-26
66
Tapiola T, Pirttilä T, Mikkonen M, Mehta P D, Alafuzoff I, Koivisto K, Soininen H.
Three-year follow-up of cerebrospinal fluid τ, β-amyloid 42- and 40 concentrations in Alzheimer's disease.
Neurosci Lett.
2000;
280
119-122
66a
Nostrand W E van, Wagner S L, Rodman Shankle W, Farrour J S, Dick M, Rozemüller J M, Kuiper M A, Wolters E C, Zimmermann J, Cotman C W, Cunningham D D.
Decreased levels of soluble amyloid β-protein precursor in cerebrospinal fluid of live Alzheimer disease patients.
Proc Natl Acad Sci USA.
1992;
89
2551-2555
66b
Sennvik K, Fastbom J, Blomberg M, Wahlund L O, Winblad B, Benedikz E.
Levels of α- and β-secretase cleared amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients.
Neurosci Lett.
2000;
278
169-172
67
Davidsson P, Bogdanovic N, Lannfeldt L, Blennow K.
Reduced expression of amyloid precursor protein, presenilin-1 and rab 3a in cortical brain regions in Alzeimer's disease.
Dement Geriatr Cogn Dis.
2001;
12
243-250
68
Hoyer S, Nitsch R.
Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type.
J Neural Transm.
1989;
75
227-232
69
Hoyer S, Nitsch R, Oesterreich K.
Ammonia is endogenously generated in the brain in the presence of presumed and verified dementia of Alzheimer type.
Neurosci Lett.
1990;
117
358-362
70 Blandini F, Sand P, Riederer P, Greenamyre J T. Parkinson's Disease-Neuroprotection. In: Lodge D, Danysz W, Parsons G (eds.). Ionotropic glutamate Receptors as Therapeutic Targets. Johnson City, TN: Graham Publishing Co. 2002 in press
71
Scorrano L, Petronilli V, Bernard P.
On the voltage dependence of the mitochondrial permeability transition pore - a critical appraisal.
J Biol Chem.
1997;
272
12 295-12 299
72
Gsell W, Strein I, Riederer P.
The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared.
J Neural Transm.
1996;
(Suppl) 47
73-101
73
Schnurra I, Bernstein H G, Riederer P, Braunewell K H.
The Neuronal Calcium Sensor Protein VILIP-1 Is Associated with Amyloid Plaques and Extracellular Tangles in Alzheimer's Disease and Promotes Cell Death and Tau Phosphorylation in Vitro: A Link between Calcium Sensors and Alzheimer's Disease?.
Neurobiol Dis.
2001;
8
900-909
74
Retz W, Kornhuber J, Riederer P.
Neurotransmission and the ontogeny of human brain.
J Neural Transm.
1996;
103
403-419
75
Cruz-Sánchez F F, Durany N, Thome J, Riederer P, Zambón D.
Correlation between Apolipoprotein-E Polymorphism and Alzheimer's Disease Pathology.
J of Alzheimer's Disease.
2000;
2
223-229
76
Retz W, Thome J, Durany N, Harsányi A, Retz-Junginger P, Kornhuber J, Riederer P, Rösler M.
Potential genetic markers of sporadic Alzheimer's dementia.
Psychiatric Genetics.
2001;
11
115-122
77
Sun F F, Fleming W E, Taylor B M.
Degradation of membrane phospholipids in the cultured human astroglial cell line UC-11MG during ATP depletion.
Biochem Pharmacol.
1993;
45
1149-1155
78
Nitsch R M, Blusztayn J K, Pittas A G, Slack B E, Growdon J H, Wurtman R J.
Evidence for a membrane defect in Alzheimer disease brain.
Proc Natl Acad Sci USA.
1992;
89
1671-1675
79
Bogdanovic N, Bretillon L, Lund E G, Diczfalusy U, Lannfelt L, Winblad B, Russell D W, Björkhem I.
On the turnover of brain cholesterol in patients with Alzheimer's disease. Hormonal induction of the cholesterol - catabolic enzyme CYP 46 in glial cells.
Neurosci Lett.
2001;
314
45-48
80
Mason R P, Shoenmaker W J, Shajenko L, Chambers T, Herbette L G.
Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol.
Neurobiol Aging.
1992;
13
413-419
81
Mulder M, Ravid R, Swaab D F, de Kloet E R, Haasdijk E D, Julk J, Boom J van der, Havekes L M.
Reduced levels of cholesterol, phospholipids, and fatty acids in cerebrospinal fluid of Alzheimer disease patients are not related to apolipoprotein E4.
Alzheimer Dis Ass Disord.
1998;
12
198-203
82
Lütjohann D, Papassotiropoulos A, Björkhem I, Locatelli S, Bagli M, Oehring R D, Schlegel U, Jessen F, Rao M L, Bergmann K von, Heun R.
Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients.
J Lipid Res.
2000;
41
195-198
83
Papassotiropoulos A, Lütjohann D, Bagli M, Locatelli S, Jessen F, Rao M L, Maier W, Björkhem I, Bergmann K von, Heun R.
Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker of Alzheimer's disease.
NeuroReport.
2000;
11
1959-1962
84
Wu Y, Sun F F, Tong D M.
Changes in membrane properties during energy depletion-induced cell injury studied with fluorescence microscopy.
Biophys J.
1996;
71
91-100
85
Klein J.
Membrane breakdown in acute and chronic neurodegeneration. Focus on choline-containing phospholipids.
J Neural Transm.
2000;
107
1027-1063
85a
Kirsch C, Eckert G P, Müller W E.
Statin effects on cholesterol micro-domains in brain plasma membranes.
Biochem Pharmacol.
2003;
65
843-856
85b
Fan Q W, Yu W, Senda T, Yanagisawa K, Michikawa M.
Cholesterol-dependent modulation of τ phosphorylation in cultured neurons.
J Neurochem.
2002;
76
391-400
85c
Meske V, Albert F, Richter D, Schwarze J, Ohm T G.
Blockade of HMG-COA reductase activity causes changes in suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer's disease.
Euro J Neurosci.
2003;
17
93-102
85d
Müller W E, Kirsch C, Eckert G P.
Membrane-disordering effects of β-amyloid peptides.
Biochem Soc Trans.
2001;
29
617-623
86
Heiss W D, Hebold T, Klinkhammer P, Ziffling P, Szelies B, Pawlik G, Herholz K.
Effect of piracetam on cerebral glucose metabolism in Alzheimer's disease as measured by positron emission tomography.
J Cereb Blood Flow Metabol.
1988;
8
613-617
87
Scheuer K, Rostock A, Bartsch R, Müller W E.
Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain.
Pharmacopsychiatry.
1999;
32 (Suppl)
10-16
88
Müller W E, Koch S, Scheuer K, Rostock A, Bartsch R.
Effects of piracetam on membrane fluidity in the aged mouse rat, and human brain.
Biochem Pharmacol.
1997;
53
135-140
89
Hoyer S, Lannert H, Nöldner M, Chatterjee S S.
Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb 761).
J Neural Transm.
1999;
106
1171-1188
90
Stoll S, Scheuer K, Pohl O, Müller W E.
Ginkgo biloba extract (EGb 761) independently improves changes in passive avoidance learning and brain membrane fluidity in the aging mouse.
Pharmacopsychiatry.
1996;
29
144-149
91
Watanabe C MH, Wolffram S, Ader P, Rimbach G, Packer L, Maguire J J, Schultz P G, Gohil K.
The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba.
Proc Natl Acad Sci USA.
2001;
98
6577-6580
91a
Huri H, Ogwuegbu S O, Boujard N, Drieu D, Papedopulus V.
In vivo granulation of the peripheral-type benzodiazepine receptor and glucocorticoid syntheses by the Ginkgo biloba extract 761 and isolated gingkolides.
Endocrinology.
1996;
137
5707-57 18
92
Le Bars P L, Katz M M, Berman N, Itil T M, Freedman A M, Schatzberg A F.
A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia.
J Amer Med Ass.
1997;
278
1327-1332
93
Sims N R, Bowen D M, Allen S J, Smith T TC, Neary D, Thomas D J, Davison A N.
Presynaptic cholinergic dysfunction in patients with dementia.
J Neurochem.
1993;
40
503-509
94
Kaufer D, Friedman A, Seidman S, Soreq H.
Acute stress facilitates long-lasting changes in cholinergic gene expression.
Nature.
1998;
393
373-377
95
Sapolsky R M.
The stress of Gulf War syndrome.
Nature.
1998;
393
308-309
96
Kammer H von der, Mayhaus M, Albrecht C, Enderich J, Wegner M, Nitsch R M.
Muscarinic acetylcholine receptors activate expression of the Egr gene family of transcription factors.
J Biol Chem.
1998;
273
14 538-14 544
97
Davidsson P, Blennow K, Andreasen N, Eriksson B, Minthon L, Hesse C.
Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer's disease.
Neurosci Lett.
2001;
300
157-160
98
Woodruff-Pak D S, Vogel III R W, Wenk G L.
Galantamine: Effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning.
Proc Natl Acad Sci USA.
2001;
98
2089-2094
99
Jeyrasasingam G, Yeluashvili M, Quik M.
Tacrine, a reversible acetylcholinesterase inhibitor, induces myopathy.
NeuroReport.
2000;
11
1173-1176
100
Lahiri D K, Farlow M R, Hintz N, Utsuki T, Greig N H.
Cholinesterase inhibitors, β-amyloid precursor protein and amyloid β-peptides in Alzheimer's disease.
Acta Neurol Scand Suppl.
2000;
176
60-67
101
Kornhuber J, Weller M, Schoppmeyer K, Riederer P.
Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties.
J Neural Tansm.
1994;
43 (Suppl)
91-104
102
Winblad B, Poritis N.
Memantine in severe dementia: results of the M-Best study (Benefit and efficacy in severly demented patients during treatment with memantine).
Int J Geriatr Psychiatry.
1999;
14
135-146
103
Heidrich A, Rösler M, Riederer P.
Pharmakotherapie bei Alzheimer-Demenz: Therapie kognitiver Symptome - neue Studienresultate.
Fortschr Neurol Psychiat.
1997;
65
108-121
103a Iqbal K. Neurofibrillary Degeneration: A Promising Target for the Treatment of Alzheimer's disease and other Tauopathies. Seville: Abstract book, p 42, Int. Conf. AD/PD 2003
103b Alvarez X A, Lombardi V, Sampedro C, Corzo L, Zas Z, Perez P, Laredo M, Couceiro V, Astoreka I, Varela M, Fernandez-Novoa L, Cacabelos R, Stoeffler A, Moebius H J. Genotype-Related Reduction of Apoptosis in Alzheimer's disease Patients treated with Memantine. Seville: Abstract book, p 54, Int. Conf. AD/PD 2003
103c
Reisberg B, Stoeffler A, Ferris S, Schmitt F, Doody R S, Moebius H J.
A placebo-controlled study of memantine in advanced Alzheimer's disease.
New England J Med.
2003;
348
1333-1341
104
Gerlach M, Youdim M BH, Riederer P.
Pharmacology of selegiline.
Neurology.
1996;
47 (Suppl 3)
2137-2145
105
Mahley R.
Apolipoprotein E: cholesterol transport protein with expanding role in cell biology.
Science.
1988;
240
622-630
106
Simons M, Keller P, De Strooper B, Beyreuther K, Dotti C, Simons K.
Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons.
Proc Natl Acad Sci USA.
1998;
95
6460-6464
107
Endo A, Hasumi K.
Biochemical aspects of HMG CoA reductase inhibitors.
Ad Enzyme Regul.
1989;
28
53-64
108
Jick H, Zornberg G L, Jick S S, Seshadri S, Drachman D A.
Statins and the risk of dementia.
Lancet.
2000;
356
1627-1631
109
Wolozin B, Kellman W, Ruosseau P, Celesia G G, Siegel G.
Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3 methyl-glutaryl Coenzyme A reductase inhibitors.
Arch Neurol.
2000;
57
1439-1443
110
Blennow K, Wallin A.
Clinical heterogeneity of probable Alzheimer's disease.
J Geriatr Psychiatry Neurol.
1992;
5
106-113
111
Fassbender K, Simons M, Bergmann C, Stroick M, Lütjohann D, Keller P, Runz H, Kühl S, Bertsch T, Bergmann K von, Hennerici M, Beyreuther K, Hartmann T.
Simvastatin strongly reduces levels of Alzheimer disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo.
Proc Natl Acad Sci USA.
2001;
98
5856-5861
112
Eckert G P, Kirsch C, Müller W E.
Differential effects of lovostatin treatment on brain cholesterol levels in normal and ApoE-deficient mice.
NeuroReport.
2001;
12
883-887
112a
Simons M, Schwärzler I, Lütjohann D, Bergmann K von, Beyreuther K, Dichgans J, Wormstall H, Hartmann T, Schulz J B.
Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: A 26-week randomised, placebo-controlled, double-blind trial.
Ann Neurol.
2002;
52
346-350
112b Sjorgren M JC, Gustafsson K, Syversen S, Olsson A, Wallin A, Blennow K. Treatment with simvastatin in patients with Alzheimer's disease lowers both alpha- and beta-cleaved amyloid precursor protein. Seville: Abstract book, p 47, Int. Conf. AD/PD 2003
112c Yanagisawa K. Cholesterol and Aβ cascade: Pathological implication of Apolipoproteine in Alzheimer's disease. Seville: Abstract book, p 123, Int. Conf. AD/PD 2003
113
Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K.
Cholesterol-dependent formation of GM1 ganglioside-bound amyloid β-protein, an endogenous seed for Alzheimer amyloid.
J Biol Chem.
2001;
276
24985-24990
114
Birge S J.
Mortel KF. Estrogen and the treatment of Alzheimer's disease.
Am J Med.
1997;
103
36-45
115
Lannert H, Wirtz P, Schuhmann V, Galmbacher R.
Effects of estradiol (β-17) on learning, memory and cerebral energy metabolism in male rats after intracerebroventricular administration of streptozotocin.
J Neural Transm.
1998;
105
1045-1063
116
McEwen B S.
The molecular and neuroanatomical basis for estrogen effects in the central nervous system.
J Clin Endocrinol Metabol.
1999;
84
1790-1797
117
Blum-Degen D, Haas M, Pohli S, Harth S, Riederer P, Götz M.
Scavestrogens protect IMR 32 cells from oxidative stress - induced cell death.
Toxicol Pharmacol.
1998;
152
49-55
118
Berchtold N C, Kesslak J P, Pike C J, Adlard P A, Cotman C W.
Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus.
Eur J Neurosci.
2001;
14
1992-2002
119
Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P E, Sheline Y, Luby J, Dagogo-Jack A, Alderson A.
Memory improvement following induced hyperinsulinemia in dementia of the Alzheimer type.
Neurobiol Aging.
1996;
17
123-130
120
Manning C A, Ragazzino M C, Gold P E.
Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer's type.
Neurobiol Aging.
1993;
14
523-528
121
Boyt A A, Taddel K, Hallmayer J, Helmerhorst E, Gandy S E, Craft S, Martins R N.
The effect of insulin and glucose on the plasma concentration of Alzheimer's amyloid precursor protein.
Neuroscience.
2000;
95
727-734
122
Löffler T, Lee S K, Nöldner M, Chatterjee S S.
Effect of Ginkgo biloba extract (EGb 761) on glucose-metabolic-related markers in streptozotocin-damaged rat brain.
J Neural Transm.
2001;
108
457-1474
123
Robinson S R, Münch G.
Alzheimer's vaccine: a cure worse than the disease?.
J Neural Transm.
2002;
109
537-539
124
Check E.
Nerve inflammation halts trial for Alzheimer's drug.
Nature.
2002;
415
462
125
Braak H, Braak E, Yilmazer D, de Vos R AI, Jansen E NH, Bohl J.
Pattern of brain destruction in Parkinson's and Alzheimer's diseases.
J Neural Transm.
1996;
103
455-490
Prof. Dr. Peter Riederer
Klinik und Poliklinik für Psychiatrie und Psychotherapie · Klinische Neurochemie
Füchsleinstr. 15
97080 Würzburg
Email: peter.riederer@mail.uni-wuerzburg.de