Minim Invasive Neurosurg 2003; 46(3): 129-137
DOI: 10.1055/s-2003-40736
Original Article
© Georg Thieme Verlag Stuttgart · New York

Stereoscopic Navigation-Controlled Display of Preoperative MRI and Intraoperative 3D Ultrasound in Planning and Guidance of Neurosurgery: New Technology for Minimally Invasive Image-Guided Surgery Approaches

T.  A.  Nagelhus Hernes1 , S.  Ommedal1 , T.  Lie1, 3 , F.  Lindseth1 , T.  Langø1 , G.  Unsgaard2
  • 1SINTEF Unimed, Trondheim, Norway
  • 2Department of Neurosurgery, University Hospital in Trondheim, NorwayThe Norwegian University of Science and Technology, Trondheim Norway
  • 3Present address: Mison AS, Trondheim Norway
TL has not been involved in the study after he became a developer in MISON AS in 1999.
Further Information

Publication History

Publication Date:
21 July 2003 (online)

Abstract

Objective: This paper demonstrates a method that brings together three essential technologies for surgery planning and guidance: neuronavigation systems, 3D visualization techniques and intraoperative 3D imaging technologies. We demonstrate the practical use of an in-house interactive stereoscopic visualization module that is integrated with a 3D ultrasound based neuronavigation system. Materials and Methods: A stereoscopy volume visualization module has been integrated with a 3D ultrasound based neuronavigation system, which also can read preoperative MR and CT data. The various stereoscopic display modalities, such as “cut plane visualization” and “interactive stereoscopic tool guidance” are controlled by a pointer, a surgical tool or an ultrasound probe. Interactive stereoscopy was tested in clinical feasibility case studies for planning and guidance of surgery procedures. Results: By orientating the stereoscopic projections in accordance to the position of the patient on the operating table, it is easier to interpret complex 3D anatomy and to directly take advantage of this 3D information for planning and surgical guidance. In the clinical case studies, we experienced that the probe-controlled cut plane visualization was promising during tumor resection. By combining 2D and 3D display, interpretation of both detailed and geometric information may be achieved simultaneously. The possibilities of interactively guiding tools in a stereoscopic scene seemed to be a promising functionality for use during vascular surgery, due to specific location of certain vessels. Conclusion: Interactive stereoscopic visualization improves perception and enhances the ability to understand complex 3D anatomy. The practical benefit of 3D display is increased considerably when integrated with surgical navigation systems, since the orientation of the stereoscopic projection corresponds to the orientation of the patient on the operating table. Stereoscopic visualizations work well on MR and CT images, although volume rendering techniques are especially suitable for intraoperative 3D ultrasound image data.

References

  • 1 Reinhardt H, Trippel B, Westermann B, Gratzl A. Computer aided surgery with special focus on neuronavigation.  Computerized Medical Imaging and Graphics. 1999;  23 237-244
  • 2 Gumprecht H, Darius C W, Lumenta C B. BrainLab Vector Vision neuronavigation system: Technology and clinical experiences in 131 cases.  Neurosurgery. 1999;  44 97-105
  • 3 Wadley J, Dorward N, Kitchen N, Thomas D. Preoperative planning and intraoperative guidance in modern neurosurgery: a review of 300 cases.  Ann R Coll Surg Engl. 1999;  81 217-225
  • 4 Wirtz C R, Albert F K, Schwaderer M, Heuer C, Staubert A, Tronnier V M, Knauth M, Kunze S. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery.  Neurological Research. 2000;  22 354-360
  • 5 Psiani L J, Gomeau R, Davey B LK, Peters T M. Incorporation of stereoscopic video into an image-guided neurosurgery environment. IEEE-EMBC 1995: 365-366
  • 6 Peters T M, Comeau R M, Psiani L, Bakar M, Munger P, Davey B LK. Visualization for image guided neurosurgery. IEEE-EMBC 1995: 399-400
  • 7 Glombitza G, Lamade W, Demiris A M, Gøpfert M R, Mayer A, Bahner M L, Meinzer H P, Richter G, Lehnert T, Herfarth C. Virtual planning of liver resection: image processing, visualization and volumetric evaluation.  Int J of Medical Informatics. 1999;  53 225-237
  • 8 Hayashi N, Endo S, Shibata T, Ikeda H, Takaku A. Neurosurgical simulation and navigation with three-dimensional computer graphics.  Neurosurgical Research. 1999;  21
  • 9 Gronningsaeter A, Lie T, Kleven A, Mørland T, Langø T, Unsgård G, Myhre H O, Mårvik R. Initial experience with stereoscopic visualisation of three-dimensional ultrasound data in surgery.  Surgical Endoscopy. 2000;  14 1974-1078
  • 10 Harbaugh R E, Schlusselberg D S, Jeffrey R, Hayden S, Cromwell L D, Pluta D, English R A. Three-dimensional computer tomographic angiography in the preoperative evaluation of cerebrovascular lesions.  Neurosurgery. 1995;  36 320-326
  • 11 Hope J K, Wilson J L, Thomson F J. Three-dimensional CT angiography in the detection and characterization of intracranial berry aneurysms.  Am J Neuroradiol. 1996;  17 437-445
  • 12 Nakamjima S, Atsumi H, Bhalerao A H, Jolesz F A, Kikinis R, Yoshimine T, Moriarty T M, Stieg P E. Computer-assisted surgical planning for cerebrovascular neurosurgery.  Neurosurgery. 1997;  41 403-409
  • 13 Muacevic A, Steiger H J. Computer-assisted resection of cerebral arteriovenous malformation.  Neurosurgery. 1999;  45 1164-1171
  • 14 Pflesser B, Leuwer R, Tiede U, Høhne K H. Planning and rehearsal of surgical interventions in the volume model.  Medicine Meets Virtual Reality. 2000;  IOS Press 29-264
  • 15 Soler L, Delingette H, Malandain G, Ayache N, Koehl C, Clemet J M, Dourthe O, Marescaux J. An automatic virtual patient reconstruction from CT scans for hepatic surgical planning.  Medicine meets virtual reality. 2000;  IOS press
  • 16 Hans P, Grant A J, Laitt R D, Ramsden R T, Kassner A, Jackson A. Comparison of three-dimensional visualization techniques for depicting the scala vestibuli and scala Tympani of the cochlea by using high resolution MR imaging.  Am J Neuroradiol. 1999;  20 1197-1206
  • 17 Kato Y, Sano H, Katada K, Ogura Y, Hayakawa M, Kanaoka N, Kanno T. Application of three-dimensional CT angiography (3D-CTA) to cerebral aneurysms.  Surg Neurol. 1999;  52 113-122
  • 18 Masutani Y, Dohi T, Yamane F, Iseki H, Takakura K. Augmented reality visualization system for intravascular neurosurgery.  Computer aided surgery. 1998;  3 239-247
  • 19 Vannier M W. Evaluation of 3D imaging.  In Critical reviews in diagnostic imaging. 2000;  41 315-378 by CRC press LLC
  • 20 Anxionnat R, Bracard S, Ducrocq X, Trousset Y, Launay L, Kerrien E, Braun M, Vaillant R, Scomazzoni F, Lebedinsky A, Picard L. Intracranial aneurysms: Clinical value of 3D digital substraction angiography in therapeutic decision and endovascular treatment.  Radiology. 2001;  218 799-808
  • 21 Wilkinson E P, Shahidi R, Wang B, Martin D P, Adler J R, Steinberg G K. Remote-rendered 3D CT angiography (3DCTA) as an intraoperative aid in cerebrovascular neurosurgery.  Computer Aided Surgery. 1999;  4 256-263
  • 22 Walker D G, Kapur T, Kikinis R, Yezzi A, Zollei L, Bramley M D, Ma F, Black P. Automatic segmentation and its use with an electromagnetic neuronavigation system. Sydney Australia: Abstract presented at the 12th World Congress of Neurosurgery 16 - 20 September 2001
  • 23 Hill D LG, Maurer C R, Maciunas R J, Barwise J A, Fitzpatrick J M, Wang M Y. Measurement of intraoperative brain surface deformation under a craniotomy.  Neurosurgery. 1998;  43 514-526
  • 24 Jödicke A, Deinsberger W, Erbe H, Kriete A, Böker D K. Intraoperative three-dimensional ultrasonography: An approach to register brain shift using multidimensional image processing.  Minim Invas Neurosurg. 1998;  41 13-19
  • 25 Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualisation of and compensation for brain shift using intraoperative magnetic resonance imaging.  Neurosurgery. 2000;  47 1070-1080
  • 26 Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes T A. Neuronavigation by intraoperative three-dimensional ultrasound: Initial experience during brain tumor surgery.  Neurosurgery April. 2002;  50: no 4
  • 27 Hammoud M A, Ligon B L, ElSouki R, Shi W M, Schomer D F, Sawaya R. Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging.  J Neurosurg. 1996;  84 737-741
  • 28 Knauth M, Wirtz C R, Tronnier V M, Aras N, Kunze S, Sartor K. Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas.  Am J Neuroradiol. 1999;  20 1642-1646
  • 29 Paleologos T S, Wadley J P, Kitchen N D, Thomas D GT. Clinical utility and cost-effectiveness of intraoperative image guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery.  Neurosurgery. 2000;  47 40-48
  • 30 Tronnier V M, Bonsanto M M, Staubert A, Knauth M, Kunze S, Wirtz C R. Comparison of intraoperative MR imaging and 3D-navigated ultrasonography in the detection and resection control of lesions.  Neurosurg Focus. 2001;  10 1-5
  • 31 Oikarinen J, Hietala R, Jyrkinen L. Volume rendering using seed-filling acceleration: supporting cut planes by fast reseeding.  Computer assisted surgery. 1999;  4 169-181
  • 32 Gronningsaeter A, Kleven A, Ommedal S, Aarseth T E, Lie T, Lindseth F, Langø T, Unsgård G. SonoWand, an ultrasound-based neuronavigation system.  Neurosurgery. 2000;  46 1373-1379
  • 33 Bucholz R D, Yeh D D, Trobaugh J, McDurmont L L, Sturm C D, Baumann C, Henderson J M, Levy A, Kessman P. The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. Presented in Lecture Notes in Computer Science Proceedings of the 1997 1st Joint Conference of Computer Vision. Grenoble, France: Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery March 1977: 19-22
  • 34 Hata N, Dohi T, Iseki H, Takakura K. Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration.  Neurosurgery. 2000;  41 608-614
  • 35 Tronnier V M, Wirtz C R, Knauth M, Lenz G, Pastyr O, Bonsanto M M, Albert F K, Kuth R, Staubert A, Sartor K, Kunze S. Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery.  Neurosurgery. 1997;  40 891-902
  • 36 Wirtz C R, Kanuth M, Staubert A, Bonsanto M M, Sartor K, Kunze S, Tronnier V M. Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery.  Neurosurgery. 2000;  46 1112-1122
  • 37 Hernes T AN, Langø T, Lindseth F, Bang J, Unsgård G. Intraoperative 3D ultrasound in neuronavigation: Accuracy analysis and clinical considerations. Sydney, Australia: Presented at the 12th World Congress of Neurosurgery September 2001
  • 38 Wirtz C R, Knaut M, Hassfeld S, Tronnier V M, Albert F K, Bonsanto M M, Kunze S. Neuronavigation - first experiences with three different commercially available systems.  Zentralbl Neurochir. 1998;  59 14-22
  • 39 Dorward N L, Alberti O, Palmer J D, Kitchen N D, Thomas D GT. Accuracy of true frameless stereotaxi: in vivo measurement and laboratory phantom studies.  J Neurosurg. 1999;  90 160-168
  • 40 Lindseth F, Ommedal S, Bang J, Unsgård G, Hernes T AN. Image fusion of ultrasound and MRI as an aid for assessing anatomical shift and for improving overview and interpretation in ultrasound guided neurosurgery. Berlin: Proc of the 15th International Congress and Exhibition in Computer Assisted Radiology and Surgery (CARS2001), June 27-30 2001
  • 41 Jannin P, Fleig O J, Seigneuret E, Grova C, Morandi X, Scarabin J M. A data fusion environment for multimodal and multi-informational neuronavigation.  Computer Aided Surgery. 2000;  5 1-10

T. A. Nagelhus Hernes,Research Director, PhD 

SINTEF Unimed, Ultrasound · Medical Technical Research Centre · Olav Kyrres gt

7465 Trondheim

Norway

Phone: +47-73-590235 ·

Fax: +47-73-597873

Email: Toril.N.Hernes@sintef.no