Subscribe to RSS
DOI: 10.1055/s-2003-41303
Prolactin-Signal Transduction in Neonatal Rat Pancreatic Islets and Interaction with the Insulin-Signaling Pathway
Publication History
Received 30 July 2002
Accepted after Revision 7 November 2002
Publication Date:
13 August 2003 (online)
Abstract
During pregnancy, pancreatic islets undergo structural and functional changes in response to an increased demand for insulin. Different hormones, especially placental lactogens, mediate these adaptive changes. Prolactin (PRL) mainly exerts its biological effects by activation of the JAK2/STAT5 pathway. PRL also stimulates some biological effects via activation of IRS-1, IRS-2, PI 3-kinase, and MAPK in different cell lines. Since IRS-2 is important for the maintenance of pancreatic islet cell mass, we investigated whether PRL affects insulin-signaling pathways in neonatal rat islets. PRL significantly potentiated glucose-induced insulin secretion in islets cultured for 7 days. This effect was blocked by the specific PI 3-kinase inhibitor wortmannin. To determine possible effects of PRL on insulin-signaling pathways, fresh islets were incubated with or without the hormone for 5 or 15 min. Immunoprecipitation and immunoblotting with specific antibodies showed that PRL induced a dose-dependent IRS-1 and IRS-2 phosphorylation compared to control islets. PRL-induced increase in IRS-1/-2 phosphorylation was accompanied by an increase in the association with and activation of PI 3-kinase. PRL-induced IRS-2 phosphorylation and its association with PI 3-kinase did not add to the effect of insulin. PRL also induced JAK2, SHC, ERK1 and ERK2 phosphorylation in neonatal islets, demonstrating that PRL can activate MAPK. These data indicate that PRL can stimulate the IRSs/PI 3-kinase and SHC/ERK pathways in islets from neonatal rats.
Key words
Prolactin - Insulin - Neonatal Rat Islets - Insulin Receptors Substrates 1/2 - PI 3-Kinase - MAP-Kinase - Wortmannin
References
- 1 Ihle J N, Witthuhn B A, Quelle F W, Yamamoto K, Thierfelder W E, Kreider B, Silvennoinen O. Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci. 1994; 19 222-227
- 2 Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly P A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998; 19 225-268
- 3 Cousin S P, Hügl S R, Myers M G, White M F, Reifel-Miller A, Rhodes C J. Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via Janus Kinase 2 (JAK2 )/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signaling. Biochem J. 1999; 344 649-658
- 4 Nielsen J H, Linde S, Welinder B S, Billestrup N, Madsen O D. Growth hormone is a growth factor for the differentiated pancreatic beta-cell. Mol Endocrinal. 1989; 3 165-173
- 5 Freeman M E, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000; 80 1523-1631
- 6 Erwin R A, Kirken R A, Malabarba M G, Farrar W L, Rui H. Prolactin activates Ras via signaling protein SHC, growth factor fereceptor bound 2, and Son of Sevenless. Endocrinology. 1995; 156 3512-3518
- 7 Goupille O, Barnier J-V, Guibert B, Paly J, Djiane J. Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol. 2000; 159 133-146
- 8 Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark G R, Kerr I M, Tsushima T, Akanuma Y, Komuro I, Tobe K, Yasaki Y, Kadowaki T. Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. J Biol Chem. 1998; 273 15 719-15 726
- 9 Nielsen J H, Svensson C, Galsgaard E D, Møldrup A, Billestrup N. Beta cell proliferation and growth factors. J Mol Med. 1999; 77 62-66
- 10 Nielsen J H, Galsgaard E D, Møldrup A, Friedrichsen B N, Billestrup N, Hansen J A, Lee Y C, Carlsson C. Regulation of β-cell mass by hormones and growth factors. Diabetes. 2001; 50 [Suppl 1], S25-S29
- 11 Folli F, Saad M JA, Backer J M, Kahn C R. Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem. 1992; 267 22 171-22 177
- 12 Velloso L A, Carneiro E M, Crepaldi S C, Boschero A C, Saad M JA. Glucose- and insulin-induced phosphorylation of the insulin receptor and its primary substrates IRS-1 and IRS-2 in rat pancreatic islets. FEBS Lett. 1995; 377 353-357
- 13 Harbeck M C, Louie D C, Howland J, Wolf B A, Rothenberg P L. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabetes. 1996; 45 711-717
- 14 Saad M JA, Carvalho C RO, Thirone A CP, Velloso L A. Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of intact rat. J Biol Chem. 1996; 271 22 100-22 104
- 15 Trumper K, Trumper A, Trusheim H, Arnold R, Goke B, Horsch D. Integrative mitogenic role of protein kinase B/AKT in β-cells. Ann N Y Acad Sci. 2000; 921 242-250
- 16 Baixeras E, Jeay S, Kelly P A, Postel-Vinay M C. The proliferative and antiapoptotic actions of growth hormone and insulin-like growth factor-1 are mediated through distinct signaling pathways in the Pro-B Ba/F3 cell line. Endocrinology. 2001; 142 2968-2977
- 17 Parsons J A, Brelje T C, Sorenson R L. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology. 1992; 130 1459-1466
- 18 Sorenson R L, Brelje T C, Roth C. Effects of steroid and lactogenic hormones on islets of Langerhans: a new hypothesis for the role of pregnancy steroids in the adaptation islets to pregnancy. Endocrinology. 1993; 133 2227-2234
- 19 Sorenson R L, Brelje T C. Adaptation of islets of Langerhans to pregnancy: β-cells growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res. 1997; 29 301-307
- 20 Green I C, Taylor K W. Effects of pregnancy in the rat on the size and insulin secretory response of the islets of Langerhans. J Endocr. 1972; 54 317-325
- 21 Parsons J A, Bartke A, Sorenson R L. Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: effect of lactogenic hormones. Endocrinology. 1995; 136 2013-2021
- 22 Fleenor D, Petryk A, Driscoll P, Freemark M. Constitutive expression of placental lactogen in pancreatic β cell: effects on cell morphology, growth, and gene expression. Pediatr Res. 2000; 47 136-142
- 23 Vasavada R C, Garcia-Ocaña A, Zawalich W S, Sorenson R L, Dann P, Syed M, Ogren L, Talamantes F, Stewart A F. Targeted expression of placental lactogen in the beta cells of transgenic mice results in beta cell proliferation, islet mass augmentation, and hypoglycemia. J Biol Chem. 2000; 275 15 399-15 406
- 24 Galsgaard E D, Nielsen J H, Moldrup A. Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a and STAT5b. J Biol Chem. 1999; 274 18 686-18 692
- 25 Boschero A C, Tombaccini D, Atwater I. Effects of glucose on insulin release and 86Rb permeability in cultured neonatal and adult islets. FEBS Lett. 1988; 236 375-379
- 26 Boschero A C, Crepaldi S C, Carneiro E M, Delattre E, Atwater I. Prolactin induces maturation of glucose sensing mechanisms in cultured neonatal rat islets. Endocrinology. 1993; 133 515-520
- 27 Boschero A C, Tombaccini D, Carneiro E M, Atwater I J. Differences in K+ permeability between cultured adult and neonatal rat islets of Langerhans in response to glucose, tolbutamide, diazoxide and theophylline. Pancreas. 1993; 8 44-49
- 28 Crepaldi S C, Carneiro E M, Boschero A C. Long-term effect of prolactin treatment on glucose-induced insulin secretion in cultured neonatal rat islets. Horm Metab Res. 1997; 29 220-224
- 29 Mendonça A C, Carneiro E M, Bosqueiro J R, Crepaldi-Alves S C, Boschero A C. Development of the insulin secretion mechanism in fetal and neonatal rat pancreatic B-cells: response to glucose, K+, theophylline, and carbamylcholine. Braz. J Med Biol Res. 1998; 31 841-846
- 30 Withers D J, Gutierrez J S, Towery H, Burks D J, Ren J-M, Previs S, Zhang Y, Bernal D, Pons S, Shulman G I, Bonner-Weir S, White M F. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998; 391 900-904
- 31 Briaud I, Rouault C, Bailbé D, Portha B, Reach G, Poitout V. Glucose-induced insulin mRNA accumulation is impaired in islets from neonatal streptozotocin-treated rats. Horm Metab Res. 2000; 32 103-106
- 32 Laemmli U K. Cleavage of a structural proteins during the assembly of the head of bacteriophage T. Nature. 1970; 227 680-685
- 33 Yu Z-W, Eriksson J W. The upregulating effect of insulin and vanadate on cell surface insulin receptors in rat adipocytes is modulated by glucose and energy availability. Horm Metab Res. 2000; 32 310-315
- 34 Berlanga J J, Gualillo O, Buteau H, Applanat M, Kelly P A, Edery M. Prolactin actives tyrosyl phosphorylation of insulin receptor substrate1 and phosphatidylinositol-3-OH kinase. J Biol Chem. 1997; 272 2050-2052
- 35 Ptasznik A, Beattie G M, Mally M I, Cirulli V, Lopez A, Hayek A. Phosphatidylinositol 3-kinase is a negative regulator of cellular differentiation. J Cell Biol. 1997; 137 1127-1136
- 36 Levy-Toledano R, Blaettler D H, LaRochelle W J, Taylor S I. Insulin-induced activation of phosphatidylinositol (PI) 3-kinase. J Biol Chem. 1995; 270 30 018-30 022
- 37 Velloso L A, Folli F, Sun X J, White M F, Saad M JA, Kahn C R. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA. 1996; 93 12 490-12 495
- 38 Fasshauer M, Klein J, Ueki K, Kriauciunas K M, Benito M, White M F, Kahn C R. Essential role of insulin receptor substrate-2 in insulin stimulation of Glut 4 translocation and glucose uptake in brown adipocytes. J Biol Chem. 2000; 275 25 494-25 501
- 39 Mandrup-Poulsen T. Beta-cell apoptosis: stimuli and signaling. Diabetes. 2001; 50 [Suppl 1] S58-S63
- 40 Nunoi K, Yasuda K, Tanaka H, Kubota A, Okamoto Y, Adachi T, Shihara N, Uno M, Xu L M, Kagimoto S, Seino Y, Yamada Y, Tsuda K. Wortmannin, a PI 3-kinase inhibitor: promoting effect on insulin secretion from pancreatic beta cells through cAMP-dependent pathway. Biochem Biophys Res Commun. 2000; 270 798-805
- 41 Aspinwall C A, Qian W-J, Roper M G, Kulkarni R N, Kahn C R, Kennedy R T. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β-cells. J Biol Chem. 2000; 275 22 331-22 341
- 42 Da Silva Xavier G, Varadi A, Ainscow E K, Rutter G A. Regulation of gene expression by glucose in pancreatic beta-cells (MIN 6) via insulin secretion and activation of phosphatidylinositol 3-kinase. J Biol Chem. 2000; 275 36 269-36 277
- 43 Aikin R, Rosenberg L, Maysinger D. Phosphatidylinositol 3-kinase signaling to AKT mediates survival in isolated canine islets of Langerhans. Biochem Biophys Res Commun. 2000; 277 455-461
- 44 Friedrichsen B N, Galsgaard E D, Nielsen J H, Møldrup A. Growth hormone- and prolactin- induced proliferation of insulinoma cells, INS-1, depends on activation of STAT5 (signal transducer and activator of transcription 5). Mol Endocrinol. 2001; 15 136-148
- 45 Buckley A R, Buckley D J. Prolactin regulation of apoptosis-associated gene expression in T cells. Ann N Y Acad Sci. 2000; 917 522-533
Prof. A. C. Boschero
Departamento de Fisiologia e Biofísica · Instituto de Biologia · CP 6109 · Universidade Estadual de Campinas (UNICAMP)
Campinas 13083-970 · SP · Brasil
Phone: 55 19 3788 6202
Fax: 55 19 3289 3124
Email: boschero@unicamp.br