References
<A NAME="RD11403ST-1">1</A>
Current address: Department of Organic Chemistry, Arrhenius Laboratory, Stockholm
University, SE-10691 Stockholm, Sweden. Fax: +46(8)154908
<A NAME="RD11403ST-2A">2a</A>
Enantioselective Synthesis of β-Amino Acids
Juaristi E.
Wiley-VCH;
Weinheim:
1997.
<A NAME="RD11403ST-2B">2b</A>
Kleinmann EF. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Flemming I.
Pergamon Press;
New York:
1991.
Chap. 4.1.
<A NAME="RD11403ST-2C">2c</A>
Seebach D.
Matthews JL.
Chem. Commun.
1997,
2015
<A NAME="RD11403ST-2D">2d</A>
Knapp S.
Chem. Rev.
1995,
95:
1859
<A NAME="RD11403ST-2E">2e</A>
Wang Y.-F.
Izawa T.
Kobayashi S.
Ohno M.
J. Am. Chem. Soc.
1982,
104:
6465
For examples of alternative asymmetric synthesis of 1,3-amino alcohols, see:
<A NAME="RD11403ST-3A">3a</A>
Kochi T.
Tang TP.
Ellman JA.
J. Am. Chem. Soc.
2002,
124:
6518
<A NAME="RD11403ST-3B">3b</A>
Yamamoto Y.
Kornatsu T.
Maryama K.
J. Chem. Soc., Chem. Commun.
1985,
814
<A NAME="RD11403ST-3C">3c</A>
Toujas J.-L.
Toupet L.
Vaultier M.
Tetrahedron
2000,
56:
2665
<A NAME="RD11403ST-3D">3d</A>
Barluenga J.
Fernandez-Marí F.
Viado AL.
Aguilar E.
Olano B.
J. Org. Chem.
1996,
61:
5659
For examples of alternative catalytic asymmetric synthesis of β-amino acid derivatives,
see:
<A NAME="RD11403ST-4A">4a</A>
Sibi MP.
Shay JJ.
Liu M.
Jasperese CP.
J. Am. Chem. Soc.
1998,
120:
6615
<A NAME="RD11403ST-4B">4b</A>
Myers JK.
Jacobsen EN.
J. Am. Chem. Soc.
1999,
121:
8959
<A NAME="RD11403ST-4C">4c</A>
Nelson S.
Spencer KL.
Angew. Chem. Int. Ed.
2000,
39:
1323
<A NAME="RD11403ST-4D">4d</A>
Davies HML.
Venkataramani C.
Angew. Chem. Int. Ed.
2002,
41:
2197
<A NAME="RD11403ST-4E">4e</A>
Hodous BL.
Fu GC.
J. Am. Chem. Soc.
2002,
124:
1578
For review, see:
<A NAME="RD11403ST-5A">5a</A>
Arend M.
Westerman B.
Risch N.
Angew. Chem. Int. Ed.
1998,
37:
1044
<A NAME="RD11403ST-5B">5b</A>
Kobayashi S.
Ishitani H.
Chem. Rev.
1999,
99:
1069
<A NAME="RD11403ST-5C">5c</A>
Denmark S.
Nicaise OJ.-C. In
Comprehensive Asymmetric Catalysis
Vol. 2:
Jacobsen EN.
Pfaltz A.
Yamomoto H.
Springer;
Berlin:
1999.
p.93
<A NAME="RD11403ST-6A">6a</A>
Palomo C.
Oiarbide M.
Gonzales-Rego MC.
Sharma AK.
Garcia JM.
Landa C.
Linden A.
Angew. Chem. Int. Ed.
2000,
39:
1063
<A NAME="RD11403ST-6B">6b</A>
Corey EJ.
Decicco CP.
Newbold RC.
Tetrahedron Lett.
1991,
39:
5287
<A NAME="RD11403ST-6C">6c</A>
Seebach D.
Betschart C.
Schiess M.
Helv. Chim. Acta
1984,
67:
1593
<A NAME="RD11403ST-6D">6d</A>
Evans DA.
Urpi F.
Somers TC.
Clark JS.
Bilodeau MT.
J. Am. Chem. Soc.
1990,
112:
8215
For recent catalytic asymmetric examples, see:
<A NAME="RD11403ST-7A">7a</A>
Ishitani H.
Ueno M.
Kobayashi S.
J. Am. Chem. Soc.
2000,
122:
8180
<A NAME="RD11403ST-7B">7b</A>
Kobayashi S.
Matsubara R.
Kitagawa H.
Org. Lett.
2002,
4:
143
<A NAME="RD11403ST-7C">7c</A>
Wenzel AG.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
12964
<A NAME="RD11403ST-7D">7d</A>
Xue S.
Yu S.
Deng Y.
Wulff WD.
Angew. Chem. Int. Ed.
2001,
40:
2271
<A NAME="RD11403ST-8A">8a</A>
Córdova A.
Notz W.
Barbas CF.
J. Org. Chem.
2002,
67:
301
<A NAME="RD11403ST-8B">8b</A>
Córdova A.
Notz W.
Barbas CF.
Chem. Commun.
2002,
3024
<A NAME="RD11403ST-8C">8c</A>
Watanabe S.-i.
Córdova A.
Tanaka F.
Barbas CF.
Org. Lett.
2002,
4:
4519
<A NAME="RD11403ST-8D">8d</A>
Córdova A.
Barbas CF.
Tetrahedron Lett.
2003,
44:
1923
For other l-proline catalyzed aldehyde addition reactions, see:
<A NAME="RD11403ST-9A">9a</A>
Bøgevig A.
Juhl K.
Kumaragurubaran N.
Jørgensen KA.
Chem. Commun.
2002,
620
<A NAME="RD11403ST-9B">9b</A>
Bøgevig A.
Kumaragurubaran N.
Zhuang W.
Jørgensen KA.
Angew. Chem. Int. Ed.
2002,
41:
1790
<A NAME="RD11403ST-9C">9c</A>
List B.
J. Am. Chem. Soc.
2002,
124:
5656
<A NAME="RD11403ST-9D">9d</A>
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
6798
<A NAME="RD11403ST-10A">10a</A>
Córdova A.
Watanabe S.-i.
Tanaka F.
Notz W.
Barbas CF.
J. Am. Chem. Soc.
2002,
124:
1866
<A NAME="RD11403ST-10B">10b</A>
Córdova A.
Barbas CF.
Tetrahedron Lett.
2002,
43:
7749
There are reports of direct asymmetric Mannich reactions with unmodified ketones,
see:
<A NAME="RD11403ST-11A">11a</A>
Notz W.
Sakthivel K.
Bui T.
Zhong G.
Barbas CF.
Tetrahedron Lett.
2001,
42:
199
<A NAME="RD11403ST-11B">11b</A>
Juhl K.
Gathergood N.
Jørgensen KA.
Angew Chem. Int. Ed.
2001,
40:
2995
<A NAME="RD11403ST-11C">11c</A>
Yamasaki S.
Iida T.
Shibasaki M.
Tetrahedron
1999,
55:
8857
<A NAME="RD11403ST-11D">11d</A>
List B.
J. Am. Chem. Soc.
2000,
122:
9336
<A NAME="RD11403ST-11E">11e</A>
Córdova A.
Notz W.
Zhong G.
Betancort JM.
Barbas CF.
J. Am. Chem. Soc.
2002,
124:
1842
<A NAME="RD11403ST-11F">11f</A>
Trost BM.
Terrell LR.
J. Am. Chem. Soc.
2003,
125:
338
<A NAME="RD11403ST-11G">11g</A>
Matsunaga S.
Kumagai N.
Harada S.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
4712
<A NAME="RD11403ST-12">12</A>
We observed that Mannich product 1 was unstable and racemized if stored at room temperature or subjected to silica gel
column chromatography. In addition, 1 is prone to epimerization that decreases the diastereomeric ratio.
<A NAME="RD11403ST-13">13</A>
The reaction proceeded in other solvents as well at 23 °C: Dioxane: 65% yield, dr>10:1,
99% ee; THF: 51% yield, dr>10:1, 99% ee; Et2O: 40% yield, dr>10:1, 99% ee; and at 4 °C: THF: 36% yield, dr>10:1, >99% ee; dioxane:
62% yield, dr>10:1, 99% ee.
<A NAME="RD11403ST-14">14</A>
Anhydrous DMF (3 mL) was added to a vial containing the aldimine (0.5 mmol) and proline
(30 mol%) and placed in a 4 °C cold room. The reaction was initiated by slow addition
(0.2 mL/min) of a pree-cooled mixture of propionaldehyde (5.0 mmol) in anhyd DMF (2
mL) with syringe pump at 4 °C. After 15 h the reaction mixture was diluted with anhyd
Et2O (2 mL) and the temperature decreased to at 0 °C followed by reduction with NaBH4 (400 mg) for 10 min. Next, the reaction mixture was poured into a vigorously stirred
bi-phaseic solution of Et2O and 1 M aq HCl. The organic layer was separated and the aq phase was extracted thoroughly
with EtOAc. The combined organic phases were dried (MgSO4), concentrated, and purified by flash column chromatography (silica gel, mixtures
of hexanes/EtOAc) to afford 2. (2
S
,3
S
)-2-Methyl-3-(4-methoxyphenylamino)-3-(4-nitrophenyl)-propan-1-ol (2): 1H NMR (CDCl3): δ = 0.91 (d, 3 H, J = 7.0 Hz), 2.21 (m, 1 H), 3.64 (m, 2 H), 3.67 (s, 3 H, OMe), 4.65 (d, 1 H, J = 4.0 Hz), 6.42 (d, 2 H, J = 8.8 Hz), 6.68 (d, 2 H, J = 8.8 Hz), 7.51 (d, 2 H, J = 8.8 Hz), 8.17 (d, 2 H, J = 8.8 Hz). 13C NMR: δ = 11.9, 41.6, 56.0, 60.8, 66.0; 115.0, 115.1, 123.9, 128.3, 141.0, 147.3,
150.6, 152.6. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm): major isomer: t
R = 36.10 min; minor isomer: t
R
= 21.49 min; [α]D = -65.2 (c 0.2, MeOH). HRMS: 317.1496; C17H20N2O4 [(M + H+): calcd 317.1496]; C17H20N2O4 (316.1423).
<A NAME="RD11403ST-15">15</A>
(1
S
,2
S
)-1-(4-Methoxyphenylamino)-1-(4-nitrophenyl)-2-hydroxymethylheptane: 1H NMR (CD3OD): δ = 0.83 (t, 3 H, J = 7.0 Hz), 1.22-1.55 (m, 8 H), 2.08 (m, 1 H), 3.54 (d, 1 H, J = 3.3 Hz), 3.68 (s, 3 H, OMe), 3.73 (d, J = 3.3 Hz), 4.71 (d, J = 3.3 Hz), 6.48 (d, 2 H, J = 8.8 Hz), 6.68 (d, 2 H, J = 8.8 Hz). 13C NMR: δ = 14.4, 22.9, 27.8, 29.7, 46.4, 56.1, 63.9, 96.6, 115.3, 124.1, 128.7, 147.5.
HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm): major isomer: t
R = 17.79 min; minor isomer: t
R = 7.43 min; [α]D = -24.7 (c 0.2, MeOH). HRMS: 373.2120; C21H28N2O4 [(M + H+): calcd 373.2122); C21H28N2O4 (372.2048968).
<A NAME="RD11403ST-16">16</A>
Anhydrous DMF (3 mL) was added to a vial containing p-nitrobenzaldehyde (0.5 mmol), p-anisidine (0.5 mmol) and proline (30 mol%) and placed in a 4 °C cold room. The reaction
was initiated by slow addition (0.2 mL/min) of a pree-cooled mixture of propionaldehyde
(5.0 mmol) in anhyd DMF (2 mL) with syringe pump at 4 °C. After 16 h of total reaction
time the temperature was decreased to 0 °C followed by dilution with anhyd Et2O (2 mL) and reduction with NaBH4 (400 mg) for 10 min. Next, the reaction mixture was poured into a vigorously stirred
bi-phaseic solution of Et2O and 1 M aq HCl. The organic layer was separated and the aqueous phase was extracted
thoroughly with EtOAc. The combined organic phases were dried (MgSO4), concentrated, and purified by flash column chromatography (silica gel, mixtures
of hexanes/EtOAc) to afford 2.
<A NAME="RD11403ST-17A">17a</A> NMR-data of the major diastereomer of PMP-deprotected 6 was identical to the previously reported syn-diastereomer, see:
Jaeger V.
Buss V.
Schwab W.
Liebigs Ann. Chem.
1980,
122
<A NAME="RD11403ST-17B">17b</A>
(2
S
,3
S
)-3-Amino-2-methyl-3-phenylpropan-1-ol (9): 1H NMR (CD3OD): δ = 1.10 (d, 3 H, J = 4.4 Hz), 2.35 (m, 1 H), 3.44 (d, 1 H, J = 5.14 Hz), 3.48 (d, 1 H, J = 6.6 Hz), 4.35 (d, 1 H, J = 6.6 Hz), 7.54 (m, 5 H). 13C NMR: δ = 12.0, 40.9, 59.1, 66.2, 126.9, 127.1, 128.2, 143.9.
<A NAME="RD11403ST-17C">17c</A>
l-Proline derived 6 had the same retention time as (2S,3S)-6 that had been synthesized via known procedures, see:
Vicario JL.
Badía D.
Carrillo L.
J. Org. Chem.
2001,
66:
9030
<A NAME="RD11403ST-17D">17d</A> See also:
Vicario JL.
Badía D.
Carrillo L.
Org. Lett.
2001,
3:
773; HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm): t
R = 14.02 min
<A NAME="RD11403ST-18">18</A>
(2
S
,3
S
)-2-Methyl-3-(4-methoxyphenylamino)-3-phenylpropan-1-ol (6): 1H NMR (CD3OD): δ = 0.95 (d, 3 H, J = 7.0 Hz), 2.05 (m, 1 H), 3.38 (dd, 1 H), 3.56 (dd, 1 H), 3.62 (s, 3 H, OMe), 4.43
(d, 1 H, J = 4.0 Hz), 6.38 (d, 2 H, J = 8.8 Hz), 6.50 (d, 2 H, J = 8.8 Hz), 7.12 (m, 1 H), 7.24 (m, 2 H); 7.31 (d, 2 H, J = 7.7 Hz). 13C NMR: δ = 12.8, 43.7, 56.3, 61.4, 66.0, 115.7, 116.0, 127.7, 128.6, 129.3, 143.9,
144.6, 151.9, 153.1, 157.7. HPLC (Daicel Chiralpak AD, hexanes/i-PrOH = 99:1, flow rate 1.0 mL/min, λ = 254 nm): major isomer: t
R = 14.02 min; minor isomer: t
R = 12.18; [α]D = -6.2. (c 1, MeOH). HRMS: 272.1647; C17H21NO2 [(M + H+): calcd 272.1645); C17H21NO2 (271.172206).