Zusammenfassung
Studienziel: Ziel dieser Studie war es, den Einfluss von unterschiedlichen Cagegeometrien sowie einer zusätzlichen dorsalen pedikulären Instrumentierung unter besonderer Berücksichtigung des sagittalen lumbalen Wirbelsäulenprofils zu objektivieren. Methode: Diese Studie basiert auf einer retrospektiven Evaluierung von 119 Patienten, bei denen aufgrund einer degenerativen oder diskogenen segmentalen Instabilität eine monosegmentale Spondylodese in PLIF-Technik mit PEEK-Cages durchgeführt wurde. Ergebnisse: Unabhängig der Cagegeometrie zeigte sich postoperativ eine Verbesserung des lumbalen Wirbelsäulenprofils. Zwischen 0°-Standard- und 4°-trapezoiden Implantaten konnte keine signifikante Differenz hinsichtlich der Korrektur der Gesamtlordose, der Zwischenwirbelraumhöhe, des Wirbelgleitens und der sakralen Inklination nachgewiesen werden. Im Segment LWK 4/5 zeigte sich für 4° optimierte Cages eine tendenziell bessere Wiederherstellung der segmentalen Lordose. Die Reliabilität der röntgenologischen Auswertung, gemessen als „intra-observer”-Fehler, war zufrieden stellend. Die klinischen Ergebnisse unterschieden sich zwischen beiden Cagegeometrien nicht. Bei Kombinierung der intersomatischen Spondylodese mit einer dorsalen Instrumentierung (Fixateur interne) war eine bessere Korrektur hinsichtlich des Wirbelgleitens und der Zwischenwirbelraumhöhe festzustellen. Ohne dorsale Instrumentierung zeigten sich eine höhere Pseudarthroserate sowie schlechtere Scorewerte bei der klinischen Auswertung. Schlussfolgerung: Bei monosegmentalen Fusionen kann sowohl mit 0°- als auch 4°-trapezförmigen Implantaten eine Normalisierung des sagittalen Wirbelsäulenprofils erreicht werden. Obwohl für 4° lordosierende Implantate keine eindeutigen Vorteile nachgewiesen wurden, bieten diese zumindest theoretisch eine weitere intraoperative Möglichkeit zur Verbesserung des Wirbelsäulenprofils. Aufgrund der besseren Korrekturmöglichkeit von präoperativen Fehlstellungen sowie einer geringeren Pseudarthrose- und cageassoziierten Komplikationsrate ist die Kombination von intersomatischen Cages mit einer zusätzlichen dorsalen Instrumentierung zu empfehlen.
Abstract
Aim: To determine the effect of different cage geometries and posterior instrumentation on the sagittal spinal profile after monosegmental lumbar interbody fusion. Method: The study is based on a retrospective analysis of 119 patients with segmental instability, who were surgically managed by monosegmental PLIF with PEEK-Cages and dorsal instrumentation. Results: At radiographic follow-up after surgery we found a significant improvement of the lumbar sagittal spinal profile, independent of the cage geometry utilised. A marked discrepancy between 0°-standard and 4°-trapezoid implants concerning the radiographic parameters lumbar lordosis, disc height, correction of spondylolisthesis and sacral inclination was not found. With the use of 4° optimised cages in segment L4/5 slightly better results for segmental lordosis were obtained. Reliability of the radiographic evaluation, expressed as intra-observer error, was satisfactory. Cage geometry did not have an effect on the clinical result. By combining interbody fusion with pedicular instrumentation the reposition of slipped vertebra and distraction of the interbody space could more effectively be achieved. Patients without dorsal instrumentation had a higher rate of pseudarthrosis as well as a less satisfactory clinical outcome. Conclusion: These results show that normal sagittal alignment after single-level lumbar fusion can be achieved with rectangular and 4°-wedged cages. Although results after utilization of 4°-wedged cages do not significantly differ, these implants offer the surgeon one more sizing variation with which physiological lumbar lordosis may be attained. The combination of intersomatic implants with dorsal instrumentation achieves a more precise realignment and has a lower rate of cage-associated complications. It therefore seems prudent that an interbody fusion for the surgical management of lumbar segmental instability should be combined with pedicular instrumentation.
Schlüsselwörter
Wirbelsäulenprofil - Cage - Lordose - Fixateur - PLIF
Key words
Spinal profile - interbody cage - pedicular instrumentation - PLIF - lordosis
Literatur
1
Bagby G W.
Arthrodesis by the distraction-compression method using a stainless steel implant.
Orthopedics.
1988;
11
931-934
2
Brantigan J W, Steffee A D.
A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients.
Spine.
1993;
18
2106-2117
3
Brodke D S, Dick J C, Kunz D N, McCabe R, Zdeblick T A.
Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage.
Spine.
1997;
22
26-31
4
Cheng X G, Sun Y, Boonen S, Nicholson P H, Brys P, Dequeker J, Felsenberg D.
Measurement of vertebral shape by radiographic morphometry: sex differences and relationships with vertebral level and lumbar lordosis.
Skeletal Radiol.
1998;
27
380-384
5
Kuslich S D, Ulstrom C L, Griffith S L, Ahern J W, Dowdle J D.
The Bagdy and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial.
Spine.
1998;
23
1267-1279
6
Lund T, Oxland T R, Jost B, Cripton P, Grassmann S, Etter C, Nolte L P.
Interbody cage stabilisation in the lumbar spine. Biomechanical evaluation of cage design, posterior instrumentation and bone density.
J Bone Joint Surg [Br].
1998;
80
351-359
7
McAfee P C.
Interbody fusion cages in reconstructive operations on the spine.
J Bone Joint Surg [Am].
1999;
81
859-880
8
Ray C D.
Threaded titanium cages for lumbar interbody fusions.
Spine.
1997;
22
667-680
9
Abumi K, Panjabi M M, Kramer K M, Duranceau J, Oxland T, Crisco J J.
Biomechanical evaluation of lumbar spinal stability after graded facetectomies.
Spine.
1990;
15
1142-1147
10
Brantigan J W, McAfee P C, Cunningham B W, Wang H, Orbegosa M.
Interbody lumbar fusion using a carbon fiber cage implant versus allograft bone. An investigational study in the Spanish goat.
Spine.
1994;
19
1436-1444
11
Brantigan J W, Steffee A D, Geiger J M.
A carbon fiber implant to aid interbody lumbar fusion. Mechanical testing.
Spine.
1991;
16
277-282
12
Goh J C, Wong H K, Thambyah A, Yu C S.
Influence of PLIF cage size on lumbar spine stability.
Spine.
2000;
25
35-40
13
Pitzen T, Caspar W, Matthis D, Mueller-Storz H, Koenig J, Wurm E M, Steudel W I.
Initial stability of two PLIF-techniques. A biomechanical in-vitro-comparison.
Z Orthop.
1999;
137
214-218
14
Sandhu H S, Turner S, Kabo J M, Kanim L E, Liu D, Nourparvar A, Delamarter R B, Dawson E G.
Distractive properties of a threaded interbody fusion device. An in vivo model.
Spine.
1996;
21
1201-1210
15
Tencer A F, Hampton D, Eddy S.
Biomechanical properties of threaded inserts for lumbar interbody spinal fusion.
Spine.
1995;
20
2408-2414
16
Tullberg T, Brandt B, Ryberg J, Fritzell P.
Fusion rate after posterior lumbar interbody fusion with carbon fiber implant: 1-year follow-up of 51 patients.
Eur Spine J.
1996;
5
178-182
17
Diedrich O, Perlick L, Schmitt O, Kraft C N.
Radiographic Characteristics after Posterior Lumbar Interbody Fusion (PLIF) with Titanium, CFRP and PEEK-Cages.
J Spinal Disord.
2001;
14
522-532
18
Diedrich O, Kraft C N, Bertram R, Wagner U A, Schmitt O.
The posterior lumbar interbody fusion (PLIF) with cages in the treatment of segmental spinal instabilities.
Z Orthop.
2000;
138
162-168
19
Enker P, Steffee A D.
Interbody fusion and instrumentation.
Clin Orthop.
1994;
300
90-101
20
Weiner B K, Fraser R D.
Spine update lumbar interbody cages.
Spine.
1998;
23
634-640
21
Beckers L, Bekaert J.
The role of lordosis.
Acta Ortho Belg.
1991;
57
198-202
22
Glazer P A, Colliou O, Lotz J C, Bradford D S.
Biomechanical analysis of lumbosacral fixation.
Spine.
1996;
21
1211-1222
23
Jackson R P, McMagnus A C.
Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex and size. A prospective controlled clinical study.
Spine.
1994;
19
1611-1618
24
Jackson R P, Peterson M D, McMagnus A C, Hales C.
Compensatory spinopelvic balance over the hip axis and better reliability in measuring lordosis to the pelvic radius on standing lateral radiographs of adult volunteers and patients.
Spine.
1998;
23
1750-1767
25
LaGrone M O, Bradford D S, Moe J H, Lonstein J E, Winter R B.
Treatment of symptomatic flatback after spinal fusion.
J Bone Joint Surg [Am].
1988;
70
569-580
26
Rapoff J A, Ghanayem A J, Zdeblick T A.
Biomechanical comparison of posterior lumbar interbody fusion cages.
Spine.
1997;
22
2375-2379
27
Tribus C B, Belanger T A, Zdeblick T A.
The effect of operative position and short-segment fusion on maintennance of sagittal alignment of the lumbar spine.
Spine.
1999;
24
58-61
28
Hanley S D, Gun M T, Osti O, Shanahan E M.
Radiology of intervertebral cages in spinal surgery.
Clin Radiol.
1999;
54
201-206
29
Wiltse L L, Rothman L G.
Spondylolisthesis: Classification, diagnosis, and natural history.
Seminars in Spine Surgery.
1989;
1
78-94
30
Taillard W.
Le spondylolisthesis chez l'enfant et l'adolescent (Etude de 50 cas).
Acta Orthop Scand.
1954;
24
115-144
31
Hambly M, Lee C K, Gutteling E, Zimmermann M C, Langrana N, Pyun Y.
Tension band wiring-bone grafting for spondylolysis and spondylolisthesis. A clinical and biomechanical study.
Spine.
1989;
14
455-460
32
Lavaste F, Skalli W, Robin S, Roy-Camille R, Mazel C.
Three-Dimensional geometrical and mechanical modelling of the lumbar spine.
J Biomechanics.
1992;
25
1153-1164
33
McAfee P C, Farey I D, Sutterlin I E, Gurr K R, Warden K E, Cunningham B W.
The effect of spinal implant rigidity on vertebral bone density: a canine model.
Spine.
1991;
16
190-197
34
Diedrich O, Perlick L, Schmitt O, Kraft C N.
Radiographic spinal profile changes induced by cage design after posterior lumbar interbody fusion. Preliminary report of a study with wedged implants.
Spine.
2001;
26
E274-E280
35
Langrana N A.
Point of view: Influence of PLIF cage size on lumbar spine stability.
Spine.
2000;
25
40
36
Umehara S, Zindrick M R, Patwardhan A G, Havey R M, Vrbos L A, Knight G W, Miyano S, Kirincic M, Kaneda K, Lorenz M A.
The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments.
Spine.
2000;
25
1617-1624
37
Thomson J D, Renshaw T S.
Analysis of lumbar lordosis in posterior spine fusion for idiopathic scoliosis.
J Spinal Disord.
1989;
2
93-98
38
Stagnara P, Mauroy J C de, Dran G. et al .
Reciprocal angulation of vertebral bodies in a sagittal plane: Approach to references for the evaluation of kyphosis and lordosis.
Spine.
1982;
7
335-342
39
Gelb D E, Lenke L G, Bridwell K H, Blanke K, McEnery K W.
An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers.
Spine.
1995;
20
1351-1358
40
Saraste H, Broström L A, Aparisi T.
Prognostic radiographic aspects of spondylolisthesis.
Acta Radiologica Diagnosis.
1984;
25
427-432
41
Espeland A, Korsbrekke K, Albrektsen G, Larsen J L.
Observer variation in plain radiography of the lumbosacral spine.
Br J Radiol.
1996;
69
451-456
42
Farfan H F, Huberdeau R M, Dubow H I.
Lumbar intervertebral disc degeneration.
J Bone Joint Surg [Am].
1972;
54
492-510
43
Pope M H, Hanley E N, Matteri R E, Wilder D G, Frymoyer J W.
Measurement of intervertebral disc space height.
Spine.
1977;
2
282-286
44
Rab G T, Chao E Y.
Vertification of roentgenographic landmarks in lumbar spine.
Spine.
1977;
2
287-293
45
Steffen T, Tsantrizos A, Aebi M.
Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs.
Spine.
2000;
25
1077-1084
46
An H S, Vaccaro A, Cotler J M, Lin S.
Low lumbar burst fractures. Comparison among body cast, Harrington rod, Luque rod, and Steffee plate.
Spine.
1991;
16
(Suppl)
440-444
47
Kramer D L, Rodgers W B, Mansfield F L.
Transpedicular instrumentation and short-segment fusion of thoracolumbar fractures: a prospective study using a single instrumentation system.
J Orthop Trauma.
1995;
9
499-506
48
Muschik M, Zippel H, Perka C.
Surgical management of severe spondylolisthesis in children and adolescents. Anterior fusion in situ versus anterior spondylodesis with posterior transpedicular instrumentation and reduction.
Spine.
1997;
22
2036-2042
49
Zou D, Yoo J U, Edwards W T, Donovan D M, Chang K W, Bayley J C, Fredrickson B E, Yuan H A.
Mechanics of anatomic reduction of thoracolumbar burst fractures. Comparison of distraction versus distraction plus lordosis, in the anatomic reduction of the thoracolumbar burst fracture.
Spine.
1993;
18
195-203
50
Dickman C A, Fessler R G, MacMillan M, Haid R W.
Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases.
J Neurosurg.
1992;
77
860-870
51
Masferrer R, Gomez C H, Karahalios D G, Sonntag V K.
Efficacy of pedicle screw fixation in the treatment of spinal instability and failed back surgery: a 5-year review.
J Neurosurg.
1998;
89
371-377
52
Brown C A, Lenke L G, Bridwell K H, Geideman W M, Hasan S A, Blanke K.
Complications of pediatric thoracolumbar and lumbar pedicle screws.
Spine.
1998;
23
1566-1571
53 White A A, Panjabi M M. Clinical Biomechanics of the Spine. 2nd edn. Lippincott, Philadelphia 1990
54
Uzi E A, Dabby D, Tolessa E, Finkelstein J A.
Early retropulsion of titanium-threaded cages after posterior lumbar interbody fusion: a report of two cases.
Spine.
2001;
26
1073-1075
55
Jenny P.
Early retropulsion of titanium threaded cages after posterior lumbar interbody fusion.
Spine.
2001;
26
2638-2640
Dr. med. O. Diedrich
Oberarzt der Klinik und Poliklinik für Orthopädie, Rheinische Friedrich-Wilhelms-Universität
Sigmund-Freud-Str. 25
53105 Bonn
Phone: 0049/228/287-4170
Fax: 0049/228/287-4175
Email: mail@drdiedrich.de