Subscribe to RSS
DOI: 10.1055/s-2003-42062
Lewis Acid-Catalyzed Dimerization of N-Unprotected Aziridines
Publication History
Publication Date:
07 October 2003 (online)
Abstract
The dimerization of N-unprotected aziridines in the presence of catalytic amounts of Lewis acids has been investigated. When the reaction is carried out in the presence of alkyl acetoacetates and ytterbium(III) triflate, dimeric products are obtained in high yields and selectivities.
Key words
aziridines - catalysis - dimerization - Lewis acids - ytterbium (III) triflate
- For recent reviews see:
-
1a
Sweeney JB. Chem. Soc. Rev. 2002, 31: 247 -
1b
Chemla F.Ferreira F. Curr. Org. Chem. 2002, 6: 539 -
1c
Watson IDG.Yudin AK. Curr. Opin. Drug Discovery Dev. 2002, 5: 906 -
1d
Zwanenburg B.Ten Holte P. Top. Curr. Chem. 2001, 216: 93 -
1e
McCoull W.Davis F. Synthesis 2000, 10: 1347 -
1f
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 -
1g
Padwa A.Woolhouse AD. In Comprehensive Heterocyclic Chemistry Vol. 7:Lowski W. Pergamon; Oxford: 1984. p.47 -
2a
Crotti P.Di Bussolo V.Favero L.Macchia F.Renzi G.Roselli G. Tetrahedron 2002, 58: 7119 -
2b
Katagiri T.Takahashi M.Fujiwara Y.Ihara H.Uneyama K. J. Org. Chem. 1999, 64: 7323 -
3a
Wipf P.Venkatraman S.Miller CP. Tetrahedron. Lett. 1995, 36: 3639 -
3b
Church NJ.Young DW. Tetrahedron Lett. 1995, 36: 151 - 4
Osowska-Pacewicka K.Zwierzak A. Synth. Commun. 1998, 28: 1127 - 5
Cantrill AA.Osborn HMI.Sweeney J. Tetrahedron 1998, 54: 2181 -
6a
Lygo B. Tetrahedron 1995, 51: 12859 -
6b
Baldwin JE.Spivey AC.Schofield CJ.Sweeney JB. Tetrahedron 1993, 49: 6309 - 7
Li Z.Fernandez M.Jacobsen EN. Org. Lett. 1999, 1: 1611 - 8
Müller P.Nury P. Helv. Chim. Acta 2001, 84: 662 - 9
Meguro M.Yamamoto Y. Heterocycles 1996, 43: 2473 -
10a
Vedejs E.Klaspars A.Warner DL.Weiss AH. J. Org. Chem. 2001, 66: 7542 -
10b
Wang S.Kohn H. J. Org. Chem. 1996, 61: 9202 -
10c
Ling R.Yoshida M.Mariano PS. J. Org. Chem. 1996, 61: 4439 - 11
Brown F. Vaccine 2001, 20: 322 -
12a 1-Arylpiperazines are known ligands for serotonine receptors:
Lopez-Rodriguez ML.Ayala D.Benhamu B.Morcillo MJ.Viso A. Curr. Med. Chem. 2002, 9: 443 -
12b Diketopiperazines are used as peptidomimetics:
Dinsmore CJ.Beshore DC. Tetrahedron 2002, 58: 3297 - 13
Caiazzo A.Dalili S.Yudin AK. Org. Lett. 2002, 4: 2597 - 14
Sasaki M.Dalili S.Yudin AK. J. Org. Chem. 2003, 68: 2045 - 15
Holz J.Monsees A.Jiao H.You J.Komarov IV.Fischer C.Drauz K.Börner A. J. Org. Chem. 2003, 68: 1701 - 16
Zhuang W.Thorhauge J.Jørgensen KA. Chem. Commun. 2000, 459 -
17a
Mohri K.Kanie A.Horiguchi Y.Isobe K. Heterocycles 1999, 51: 2377 -
17b
Murphy JP.Hadden M.Stevenson PJ. Tetrahedron 1997, 53: 11827 -
18a
Kubota K.Leighton JL. Angew. Chem., Int. Ed. 2003, 42: 946 -
18b
Lucet D.Le Gall T.Mioskowski C. Angew. Chem., Int. Ed. Engl. 1998, 37: 2580 -
18c
Bennani YL.Hanessian S. Chem. Rev. 1997, 97: 3161 -
18d
Reetz MT.Jaeger R.Drewlies R.Hübel M. Angew. Chem., Int. Ed. Engl. 1991, 30: 103 -
19a
Szmuszkovicz J.Von Voigtlander PF. J. Med. Chem. 1982, 25: 1125 -
19b
Millan MJ. Trends Pharmacol. Sci. 1990, 11: 70 -
19c
Cowan A.Gmerek DE. Trends Pharmacol. Sci. 1986, 7: 69 - 20
Rajagopalan P.Scribner RM.Pennev P.Schmidt WK.Tam SW.Steinfels GF.Cook L. Bioorg. Med. Chem. Lett. 1992, 2: 715 - 21
Costello GF.James R.Shaw JS.Slater AM.Stutchbury NCJ. J. Med. Chem. 1991, 34: 181 - 23
Clarke PA.Kayaleh NE.Smith MA.Baker JR.Bird SJ.Chan C. J. Org. Chem. 2002, 67: 5226 - 24
Hamilton WC.Ibers JA. Hydrogen Bonding in Solids WA Benjamin Inc.; New York: 1968. p.16 - 27
Mikami K.Terada M.Matsuzawa H. Angew. Chem. Int. Ed. 2002, 41: 3554 ; and references therein cited
References
To a solution of 7-azabicyclo[4.1.0]heptane (1) [22] (200 mg, 2.06 mmol) and methyl acetoacetate (2a) (1.03 mmol%) in 4 mL of THF, 1 mol% of the acid additive was added. The resulting mixture was stirred for 16 h at r.t. The conversion and selectivity were determined through analysis of the crude reaction mixture by GC (biphenyl as internal standard) and 1H NMR.
25To a solution of 7-azabicyclo[4.1.0]heptane (1) (200 mg, 2.06 mmol) in 4 mL of CH2Cl2, Yb(OTf)3 (12.7 mg, 1 mol%) was added. The resulting mixture was stirred for 16 h at r.t. The mixture was treated with 5% NaOH and the aq layer was extracted with CH2Cl2 (3 × ). The combined organic layers were dried over Na2SO4 and the solvent and unconverted aziridine were evacuated. The residue was distilled at reduced pressure to give 30 mg (15% yield) of trans-2-(7-aza-bicyclo[4.1.0]hept-7-yl)cyclohexylamine(5) as clear oil.
1H NMR (CDCl3, 400 MHz): δ = 2.82 (t, J = 10 Hz, 1 H), 1.65-1.90 (m, 9 H), 1.50 (m, 1 H), 1.05-1.42 (m, 9 H), 0.96 (t, J = 10 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 75.2, 56.8, 39.8, 34.1, 33.5, 30.7, 25.1, 24.9, 24.7, 24.6, 20.6, 20.5. HRMS-FAB: m/z calcd for C12H22N2: 194.32016, found: 194.31995.
General Procedure for the Preparation of (
Z
)-3-[2-(7-Aza-bicyclo[4.1.0]hept-7-yl)-cyclohexylamino]-2-butenoate (
3)
. To a solution of 7-azabicyclo[4.1.0]hep-tane(1) (200 mg, 2.06 mmol) and acetoacetate(2) (1.03 mmol) in 4 mL of CH2Cl2, Yb(OTf)3 (12.7 mg, 1 mol%) was added. The resulting mixture was stirred 16 h at r.t. Upon completion of the reaction (by GC) the solvent was eva-cuated and the crude oil was purified by column chromato-graphy (silica gel, 80:20 hexanes-EtOAc, with 5% Et3N).
3a (R = Me, R1 = H): Isolated as a white solid (86%, mp 51-53 °C). 1H NMR (CDCl3, 400 MHz): δ = 8.59 (d, J = 10.2 Hz, 1 H), 4.39 (s, 1 H), 3.61 (s, 3 H), 3.40-3.48 (m, 1 H), 2.03 (s, 3 H), 1.88 (d, J = 12.1 Hz, 2H), 1.61-1.75 (m, 7 H), 1.10-1.39 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 171.0, 161.6, 80.9, 73.8, 57.7, 49.6, 40.8, 33.7, 33.6, 31.3, 25.0, 24.6, 24.4, 20.7, 20.4, 20.1. HRMS-FAB: m/z calcd for C17H28N2O2: 292.21508, found: 292.21487.
3b (R = Et, R1 = H): Isolated as a clear oil (83%). 1H NMR (CDCl3, 400 MHz): δ = 8.58 (d, J = 10 Hz, 1 H), 4.38 (s, 1 H), 4.08 (q, J = 4 Hz, 2 H), 3.42 (m, 1 H), 2.02 (s, 3 H), 1.87 (m, 2 H), 1.55-1.78 (m, 7 H), 1.06-1.39 (m, 10 H), 1.25 (t,
J = 4 Hz, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 170.8, 161.6, 81.3, 73.8, 58.1, 57.7, 40.9, 33.8, 33.7, 31.4, 25.0, 24.6, 24.4, 20.8, 20.4, 20.2, 14.7. HRMS-FAB: m/z calcd for C18H30N2O2: 306.44848, found: 306.44818.
3c (R = Pr, R1 = H): Isolated as a clear oil (82%). 1H NMR (CDCl3, 400 MHz): δ = 8.60 (d, J = 10 Hz, 1 H), 4.40 (s, 1 H), 3.98 (t, J = 6.8Hz, 2 H), 3.38-3.47 (m, 1 H), 2.02 (s, 3 H), 1.87 (d, J = 15 Hz, 2 H), 1.60-1.75 (m, 9 H), 1.1-1.38 (m, 10 H), 0.943 (t, J = 7.6Hz, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 170.9, 161.5, 81.3, 73.9, 63.9, 57.7, 40.9, 33.8, 33.7, 31.4, 25.1, 24.6, 24.5, 22.5, 20.8, 20.5, 20.2, 10.5. HRMS-FAB: m/z: calcd for C19H32N2O2: 320.47536, found: 320.47494
3d (R = i-Pr, R1 = H): Isolated as a clear oil (70%). 1H NMR (CDCl3, 400 MHz): δ = 8.62 (d, J = 10 Hz, 1 H), 4.92-5.00 (m, 1 H), 4.36 (s, 1 H), 3.38-3.47 (m, 1 H), 2.02 (s, 3 H), 1.87 (d, J = 14 Hz, 2 H), 1.6-1.76 (m, 7 H), 1.23 (dd, J
1 = 6.4 Hz, J
2 = 6.4 Hz, 6 H), 1.1-1.4 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 170.5, 161.4, 81.9, 73.9, 64.8, 57.8, 40.9, 33.8, 33.7, 31.4, 25.1, 24.7, 24.6, 24.5, 22.3, 20.8, 20.5, 20.2. HRMS-FAB: m/z calcd for C19H32N2O2: 320.47536, found: 320.47496.
3e (R = n-Bu, R1 = H): Isolated as a clear oil (85%). 1H NMR (CDCl3, 400 MHz): δ = 8.59 (d, J = 10 Hz, 1 H), 4.40 (s, 1 H), 4.03 (t, J = 6.8Hz, 2 H), 3.39-3.48 (m, 1 H), 2.02 (s, 3 H), 1.87 (d, J = 12 Hz, 2 H), 1.59-1.75 (m, 9 H), 1.10-1.44 (m, 12 H), 0.93 (t, J = 7.2 Hz, 3 H). 13C NMR (CDCl3, 100 MHz): δ = 171.0, 161.6, 81.4, 73.9, 62.2, 57.8, 41.0, 33.9, 33.8, 31.5, 31.3, 25.1, 24.7, 24.5, 20.9, 20.6, 20.3, 19.4, 13.9. HRMS-FAB: m/z calcd for C20H34N2O2: 334.50224, found: 334.50247.
3f (R = t-Bu, R1 = H): Isolated as a clear oil (82%). 1H NMR (CDCl3, 400 MHz): δ = 8.54 (d, J = 10 Hz, 1 H), 4.32 (s, 1 H), 3.36-3.44 (m, 1 H), 1.98 (s, 3 H), 1.87 (d, J = 12.8Hz, 2 H), 1.7-1.8 (m, 6 H), 1.46 (s, 9 H), 1.1-1.4 (m, 11 H). 13C NMR (CDCl3, 100 MHz): δ = 171.0, 160.9, 83.1, 77.5, 73.9, 57.9, 41.0, 34.0, 33.8, 31.6, 28.8, 25.2, 24.7, 24.68, 24.64, 20.9, 20.6, 20.2. HRMS-FAB: m/z calcd for C20H34N2O2: 334.50224, found: 334.50249.
3g (R = Allyl, R1 = H): Isolated as a clear oil (80%). 1H NMR (CDCl3, 400 MHz): δ = 8.58 (d, J = 10 Hz, 1 H), 5.91-6.00 (m, 1 H), 5.29 (dd, J
1 = 17.2 Hz, J
2 = 3.2 Hz, 1 H), 5.17 (dd, J
1 = 9.2 Hz, J
2 = 2.6 Hz, 1 H), 4.55 (dt, J
1 = 5.2 Hz, J
2 = 1.5 Hz, 2 H), 4.44 (s, 1 H), 3.92-3.48 (m, 1 H), 2.04 (s, 3 H), 1.87 (d, J = 12.8 Hz, 2 H), 1.60-1.74 (m, 7 H), 1.10-1.38 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 170.3, 161.9, 133.9, 116.7, 81.0, 73.9, 63.1, 57.9, 40.9, 33.8, 33.7, 31.4, 25.1, 24.6, 24.5, 20.8, 20.5, 20.3. HRMS-FAB: m/z = calcd for C19H30N2O2: 318.45948, found: 318.45966.
3h (R = Cy, R1 = H): Isolated as a clear oil (75%). 1H NMR (CDCl3, 400 MHz): δ = 8.62 (d, J = 10.4 Hz, 1 H), 4.67-4.71 (m, 1 H), 4.38 (s, 1 H), 3.38-3.47 (m, 1 H), 2.01 (s, 3 H), 1.87 (d, J = 8.4 Hz, 4 H), 1.62-1.76 (m, 10 H), 1.07-1.41 (m, 15 H). 13C NMR (CDCl3, 100 MHz): δ = 170.6, 161.6, 81.9, 74.0, 70.4, 57.9, 50.7, 41.1, 33.9, 33.8, 32.4, 31.5, 25.7, 25.2, 24.7, 24.6, 24.3, 20.9, 20.6, 20.3. HRMS-FAB: m/z calcd for C22H36N2O2: 360.54012, found: 360.5399.
3j (R = Bn, R1 = H): Isolated as a clear oil (75%). 1H NMR (CDCl3, 400 MHz): δ = 8.59 (d, J = 10 Hz, 1 H), 7.31-7.38 (m, 3 H), 7.25-7.29 (m, 2 H), 5.10 (s, 2 H), 4.48 (s, 1 H), 3.39-3.48 (m, 1 H), 2.03 (s, 3 H), 1.86 (d, J = 12 Hz, 2 H), 1.57-1.75 (m, 7 H), 1.10-1.38 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 170.5, 162.2, 137.8, 128.5, 127.8, 127.7, 81.2, 73.9, 64.2, 58.0, 41.1, 33.9, 33.8, 31.5, 25.2, 24.7, 24.6, 20.9, 20.6, 20.4. HRMS-FAB: m/z calcd for C23H32N2O2: 368.51936, found: 368.51961.
3k (R, R1 = Me): Isolated as a clear oil in 62% yield. 1H NMR (CDCl3, 400 MHz): δ = 9.39 (d, J = 9.6 Hz, 1 H), 3.69 (s, 3 H), 3.46-3.55 (m, 1 H), 2.09 (s, 3 H), 1.89 (d, J = 11.2 Hz, 2 H), 1.83 (s, 3 H), 1.71-1.77 (m, 6 H), 1.11-1.39 (m, 11 H). 13C NMR (CDCl3, 100 MHz): δ = 171.6, 159.8, 84.9, 74.1, 57.7, 50.2, 40.6, 33.9, 31.3, 25.1, 24.6, 24.5, 24.4, 20.8, 20.6, 15.9, 12.7. HRMS-FAB: m/z calcd for C18H30N2O2: 306.44848, found: 306.44908.
3m (R = Me, R1 = allyl): Isolated as a clear oil in 63% yield. 1H NMR (CDCl3, 400 MHz): δ = 9.54 (d, J = 9.6 Hz, 1 H), 5.79-5.92 (m, 1 H), 4.90-5.02 (m, 2 H), 3.68 (s, 3 H), 3.47-3.57 (m, 1 H), 3.02-3.06 (m, 2 H), 2.08 (s, 3 H), 1.91 (d, J = 12.3 Hz, 2 H), 1.72-1.80 (m, 7 H), 1.12-1.44 (m, 10 H). 13C NMR (CDCl3, 100 MHz): δ = 171.4, 160.8, 138.8, 112.8, 87.7, 73.8, 57.7, 50.3, 40.7, 34.0, 33.9, 31.3, 25.0, 24.7, 24.6, 24.4, 20.8, 20.5, 15.5. HRMS-FAB: m/z calcd for C20H32N2O2: 332.24638, found: 332.24582.
3n (R = Me, R1 = Bn): Isolated as a clear oil in 60% yield. 1H NMR (CDCl3, 400 MHz): δ = 9.69 (d, J = 9.6 Hz, 1 H), 7.14-7.30 (m, 5 H), 3.72 (s, 2 H), 3.68 (s, 3 H), 3.50-3.54 (m, 1 H), 2.05 (s, 3 H), 1.92 (d, J = 10.2 Hz, 2 H), 1.72-1.84 (m, 5 H), 1.10-1.61 (m, 12 H). 13C NMR (CDCl3, 100 MHz): δ = 171.7, 161.4, 143.2, 128.0, 127.8, 125.3, 88.9, 73.7, 57.9, 50.3, 40.7, 34.0, 33.9, 32.7, 31.4, 25.0, 24.7, 24.6, 24.4, 20.7, 20.5, 15.9. HRMS-FAB: m/z calcd for C24H34N2O2: 382.54624, found: 382.54568.
Compound 3a (200 mg, 0.685 mmol) and benzenethiol (6) (94 mg, 0.854 mmol) were dissolved in 6 mL of degassed CH3CN. The reaction mixture was stirred at r.t. for 16 h. The crude 1H NMR of the reaction mixture showed completion of the reaction and presence of the ring opening compound in two diastereomeric forms (7a and 8a; 10% de). The solvent was then removed in vacuo and the residue was eluted on silica (CH2Cl2-MeOH, 98:2) to provide compounds 7a and 8a as clear oils in an inseparable mixture (60% yield), from which 1H NMR were taken.
1H NMR (CDCl3, 400 MHz): δ = 8.71 (d, J = 9.9 Hz, 1 H), 8.63 (d, J = 9.9 Hz, 1 H), 7.45-7.38 (m, 2 × 2 H), 7.33-7.19 (m, 2 × 3 H), 4.48 (s, 1 H), 4.44 (s, 1 H), 3.65 (s, 3 H), 3.60 (s, 3 H), 3.22 (m, 2 × 1 H), 2.97 (m, 2 × 1 H), 2.57 (m, 2 × 1 H), 2.49 (m, 2 × 1 H), 2.17-1.86 (m, 2 × 5 H), 1.99 (s, 3 H), 1.97 (s, 3 H), 1.82-1.59 (m, 2 × 4 H), 1.52-1.06 (m, 2 × 8 H). HRMS-FAB: m/z calcd for C23H34N2O2S: 403.24192, found: 403.24125.
Compounds 10a and 11a were prepared from 2-methyl-aziridine (9) using standard procedure (see ref.
[26]
). Upon completion of the reaction (16 h by GC) the solvent was evacuated and the crude oil was purified by column chromatography (silica gel, 90:10 hexanes-EtOAc, with 5% Et3N). Combined yield: 64% (oils, 8% de).
A: 1H NMR (CDCl3, 300 MHz): δ = 8.49 (d, J = 7.8 Hz, 1 H), 4.43 (s, 1 H), 3.77 (m, 1 H), 3.61 (s, 3 H), 2.35 (m, 1 H), 2.21 (m, 1 H), 1.98 (s, 3 H), 1.49 (d, J = 3 Hz, 1 H), 1.35 (m, 1 H), 1.25 (m, 4 H), 1.17 (d, J = 5.4 Hz, 3 H). 13C NMR (CDCl3, 75 MHz): δ = 170.9, 161.3, 81.8, 67.5, 49.8, 49.5, 34.7, 34.6, 20.4, 19.6, 18.1. HRMS-FAB: m/z calcd for C11H20N2O2: 212.29324, found: 212.29277.
B: 1H NMR (CDCl3, 300 MHz): δ = 8.56 (d, J = 8.4 Hz, 1 H), 4.43 (s, 1 H), 3.81 (m, 1 H), 3.62 (s, 3 H), 2.63 (dd, J = 12 Hz, 5.3 Hz, 1 H), 2.00 (s, 3 H), 1.96 (dd, J = 12 Hz, 5.3 Hz, 1 H), 1.44 (m, 2 H), 1.20 (m, 4 H), 1.12 (d, J = 5.4 Hz). 13C NMR (CDCl3, 75 MHz): δ = 171.0, 161.3, 81.6, 67.7, 49.8, 49.6, 35.9, 33.8, 20.6, 19.7, 18.1. HRMS-FAB: m/z calcd for C11H20N2O2: 212.29324, found: 212.29295.