References
1a
Turro NJ.
Modern Molecular Photochemistry
Benjamin-Cumming;
Menlo Park CA:
1978.
1b
Fox MA.
Chanon M.
Photoinduced Electron Transfer
Elsevier;
Amsterdam:
1988.
1c
Gust D.
Moore TA.
Adv. Photochem.
1991,
16:
1
1d
Kavarnos GJ.
Fundamentals of Photoinduced Electron Transfer
VCH;
Weinheim:
1993.
1e
Gust D.
Moore TA.
Moore AL.
Acc. Chem. Res.
1993,
26:
198
1f
Häder D.-P.
Photosynthese
Thieme;
Stuttgart:
1999.
2a
Guldi DM.
Maggini M.
Scorrano G.
Prato M.
J. Am. Chem. Soc.
1997,
119:
974
2b
Jolliffe KA.
Langford SJ.
Ranasinghe MG.
Shephard M.
Padden-Row MN.
J. Org. Chem.
1999,
64:
1238
2c
Imahori H.
Tamaki K.
Guldi DM.
Luo C.
Fujitsuka M.
Ito O.
Sakata Y.
Fukuzumi S.
J. Am. Chem. Soc.
2001,
123:
2607
2d
Sakomura M.
Lin S.
Moore TA.
Moore AL.
Gust D.
Fujihira M.
J. Phys. Chem. A
2002,
106:
2218 ; and references cited therein
3a
Vögtle F.
Plevoets M.
Nieger M.
Azzellini GC.
Credi A.
De Cola L.
De Marchis V.
Venturi M.
Balzani V.
J. Am. Chem. Soc.
1999,
121:
6290
3b
Ceroni P.
Vicinelli V.
Maestri M.
Balzani V.
Müller WM.
Müller U.
Hahn U.
Osswald F.
Vögtle F.
New J. Chem.
2001,
25:
989
4a
Reichert VR.
Mathias LJ.
Macromolecules
1994,
27:
7030
4b
Möngin O.
Goassauer A.
Tetrahedron
1997,
53:
6835
4c
Constable EC.
Eich O.
Housecroft CE.
Johnstone LA.
Chem. Commun.
1998,
2661
4d
Oldham WJ.
Lahicotte RJ.
Bazan GC.
J. Am. Chem. Soc.
1998,
120:
2987
4e
Wang S.
Oldham WJ.
Hudack RA.
Bazan GC.
J. Am. Chem. Soc.
2000,
122:
5695
4f
Robinson MR.
Wang S.
Bazan GC.
Cao Y.
Adv. Mater.
2000,
12:
1701
4g
Constable EC.
Eich O.
Housecroft CE.
Rees DC.
Inorg. Chim. Acta
2000,
300-302:
158
4h
Zimmerman TJ.
Freundel O.
Gompper R.
Müller TJJ.
Eur. J. Org. Chem.
2000,
3305
4i
Aujard I.
Baltaze J.-P.
Baudin J.-B.
Cogné E.
Ferrage F.
Jullien L.
Perez E.
Prévost V.
Qian LH.
Ruel O.
J. Am. Chem. Soc.
2001,
123:
8177
4j
Lambert C.
Gaschler W.
Noll G.
Weber M.
Schmalzlin E.
Brauchle C.
Meerholz K.
J. Chem. Soc., Perkin Trans. 2
2001,
964
4k
Yeh H.-C.
Lee R.-H.
Chan L.-H.
Lin T.-YJ.
Chen C.-T.
Balasubramaniam E.
Tao Y.-T.
Chem. Mater.
2001,
13:
2788
4l
Maus M.
De R.
Lor M.
Weil T.
Mitra S.
Wiesler UM.
Herrman A.
Hofkens J.
Vosch T.
Müllen K.
De Schryver FC.
J. Am. Chem. Soc.
2001,
123:
7668
4m
Weil T.
Wiesler UM.
Herrman A.
Bauer R.
Hofkens J.
De Schryver FC.
Müllen K.
J. Am. Chem. Soc.
2001,
123:
8101
4n
Zimmerman TJ.
Müller TJJ.
Synthesis
2002,
1157
4o
Zimmerman TJ.
Müller TJJ.
Eur. J. Org. Chem.
2002,
2269
4p
Summers MA.
Robinson MR.
Bazan GC.
Buratto SK.
Chem. Phys. Lett.
2002,
364:
542
4q
Li Q.
Rukavishnikov AV.
Petukhov PA.
Zaikova TO.
Keana JFW.
Org. Lett.
2002,
4:
3631
4r
Grimsdale AC.
Bauer R.
Weil T.
Tchebotareva N.
Wu J.
Watson M.
Müllen K.
Synthesis
2002,
1229
4s
Sengupta S.
Purkayastha P.
Org. Biomol. Chem.
2003,
1:
436 ; and references cited therein
For less common centrally tetrahedral scaffolds viz. 9,9′-spirobifluorene and tetraphenylsilane, see:
5a
Tour JM.
Chem. Rev.
1996,
96:
537
5b
Salbeck J.
Yu N.
Bauer J.
Weissortel F.
Bestgen H.
Synth. Met.
1997,
91:
209
5c
Baurele P.
Mitschke U.
Mena-Osteritz E.
Sokolowski M.
Muller D.
Grop M.
Meerholz K.
Proc. SPIE-Int. Soc. Opt. Engl.
1998,
3476:
32
5d
Pei J.
Ni J.
Zhou X.-H.
Cao X.-Y.
Lai Y.-H.
J. Org. Chem.
2002,
67:
4924
5e
Chan L.-H.
Lee R.-H.
Hsieh C.-F.
Yeh H.-C.
Chen C.-T.
J. Am. Chem. Soc.
2002,
124:
6469
5f Also see ref.
[4e]
6a
Yao Y.
Tour JM.
J. Org. Chem.
1999,
68:
1968
6b
Hirayama D.
Takiyama K.
Aso Y.
Otsubo T.
Hasobe T.
Yamada H.
Imahori H.
Fukuzumi S.
Sakata Y.
J. Am. Chem. Soc.
2002,
124:
532
6c
Galoppini E.
Guo W.
Zhang W.
Hoertz PG.
Qu P.
Meyer GJ.
J. Am. Chem. Soc.
2002,
124:
7801
6d
Piotrowiak P.
Galoppini E.
Wei Q.
Meyer GJ.
Weiwiór P.
J. Am. Chem. Soc.
2003,
125:
5278
6e
Li Q.
Rukavishnikov AV.
Petukhov PA.
Zaikova TO.
Jin C.
Keana JFW.
J. Org. Chem.
2003,
68:
4862
6f
Jian H.
Tour JM.
J. Org. Chem.
2003,
68:
5091
7a
Sengupta S.
Sadhukhan SK.
Tetrahedron Lett.
1998,
39:
1237
7b
Sengupta S.
Sadhukhan SK.
Tetrahedron Lett.
1999,
40:
9157
7c
Sengupta S.
Sadhukhan SK.
Organometallics
2001,
20:
1889
7d
Sengupta S.
Sadhukhan SK.
Muhuri S.
Tetrahedron Lett.
2002,
43:
3521
7e
Sengupta S.
Sadhukhan SK.
Singh RS.
Indian J. Chem., Sect. B
2002,
41:
642
7f
Sengupta S.
Sadhukhan SK.
Indian J. Chem., Sect. B
2003,
42:
858
8a
Sengupta S.
Sadhukhan SK.
J. Mater. Chem.
2000,
1997
8b
Sengupta S.
Sadhukhan SK.
J. Chem. Soc., Perkin Trans. 1
2000,
4332
9
Compound 5: mp 206-207 °C (MeOH). IR (KBr): 3400, 1605, 1500, 1460, 1370 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.33 (s, 9 H), 6.65 (dd, J = 8.4, 2.1 Hz, 3 H), 6.70 (d, J = 6.6 Hz, 2 H), 6.99 (d, J = 6.6 Hz, 2 H), 7.02 (d, J = 2.1 Hz, 3 H), 7.65 (d, J = 8.4 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 28.2, 63.3, 98.7, 114.5, 130.1, 131.9, 138.0, 140.5, 146.5, 153.6.
10a
Sonogashira K. In Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.551
10b
Sonogashira K. In Metal-catalyzed Cross-coupling Reactions
Diederich F.
Stang P.
Wiley-VCH;
Weinheim:
1998.
p.203
11 Representative Procedure for Three-fold Sonogashira Couplings on 5: PdCl2(PPh3)2
(5 mg) was added to a degassed solution of 5 (0.10 g, 0.13 mmol), phenyl acetylene (0.08 g, 0.8 mmol) and CuI (4 mg) in a mixture of DMF (3 mL) and Et3N (2 mL). The reaction mixture was stirred at r.t. for 16 h. It was then concentratedd under reduced pressure, diluted with water and extracted with CH2Cl2. The organic layer was dried and the solvent removed under reduced pressure. The residue was purified by silica gel chromatography (10% EtOAc in light petroleum) to give 6 (0.057 g, 66%) as a white solid; mp 126-127 °C (CHCl3-MeOH). IR (KBr): 3410, 1600, 1520, 1465, 1360 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.43 (s, 9 H), 6.73 (d, J = 8.6 Hz, 2 H), 6.90-7.16 (m, 8 H), 7.29-7.48 (m, 12 H), 7.49-7.62 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 21.0, 64.5, 88.5, 93.8, 114.5, 121.2, 123.9, 125.6, 128.3, 128.7, 128.9, 130.1, 131.9, 132.2, 138.0, 139.5, 147.0, 156.5. 8: mp 105-106 °C (MeOH). IR (KBr): 3290, 3000, 2910, 2090, 1595, 1480 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.35 (s, 9 H), 3.26 (s, 3 H), 6.71 (d, J = 8.7 Hz, 2 H), 6.93 (d, J = 8 Hz, 3 H), 7.00 (d, J = 8.7 Hz, 2 H), 7.01 (s, 3 H), 7.33 (d, J = 8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 20.9, 64.0, 80.9, 82.3, 114.5, 119.6, 128.3, 131.7, 132.1, 138.0, 139.9, 147.0, 153.7.
12
Compound 9: mp 130-132 °C (MeOH). IR (KBr): 2916, 1596, 1521, 1500, 1442, 1344 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.36 (s, 9 H), 5.08 (s, 2 H), 6.78 (d, J = 9 Hz, 2 H), 6.92 (dd, J = 8.1, 2 Hz, 3 H), 7.01 (d, J = 2 Hz, 3 H), 7.06 (d, J = 9 Hz, 2 H), 7.25-7.33 (m, 11 H), 7.42-7.46 (m, 6 H), 7.54 (d, J = 8.1 Hz, 3 H), 8.18 (d, J = 9 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.4, 64.5, 69.1, 88.5, 93.8, 114.2, 121.2, 123.9, 124.2, 128.0, 128.5, 128.7, 128.9, 131.3, 131.4, 131.9, 132.2, 132.6, 139.5, 139.8, 144.8, 147.0, 156.7.
Compound 10: mp 132-135 °C (MeOH). IR (KBr): 2900, 2100, 1590, 1518, 1487, 1350 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.36 (s, 9 H), 3.24 (s, 3 H), 5.09 (s, 2 H), 6.73 (d, J = 9 Hz, 2 H), 6.91 (dd, J = 8, 1.8 Hz, 3 H), 7.00 (d, J = 1.8 Hz, 3 H), 7.06 (d, J = 9 Hz, 2 H), 7.30-7.36 (m, 5 H), 8.08 (d, J = 8.7 Hz, 2 H).
Compound 13: mp 203-205 °C. IR (KBr): 2902, 1604, 1521, 1508, 1456, 1344, 1242 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 1.33 (s, 27 H), 2.36 (s, 9 H), 5.16 (s, 2 H), 6.87 (d, J = 9 Hz, 2 H), 7.00 (d, J = 16.2 Hz, 3 H), 7.05-7.12 (m, 6 H), 7.24 (d, J = 9 Hz, 2 H), 7.28 (d, J = 16.2 Hz, 3 H), 7.35-7.53 (m, 14 H), 7.62 (d, J = 9 Hz, 3 H), 8.25 (d, J = 9 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 20.7, 31.7, 35.0, 64.1, 69.0, 114.0, 124.2, 124.4, 124.8, 125.8, 126.0, 126.6, 128.0, 129.5, 129.9, 130.3, 132.6, 133.1, 134.4, 135.1, 135.4, 140.5, 145.0, 146.4, 156.5.
13a
Jeffery T.
Tetrahedron
1996,
52:
10113
13b
de Meijere A.
Bräse S. In Metal-catalyzed Cross-coupling Reactions
Diederich F.
Stang P.
Wiley-VCH;
Weinheim:
1998.
p.99
13c
Beletskaya IP.
Cheprakov AV.
Chem. Rev.
2000,
100:
3009
14
Compound 11: mp 201-202 °C. IR (KBr): 3290, 1595, 1500, 1445, 1260 cm-1. 1H NMR (300 MHz, CDCl3/TMS): δ = 2.35 (s, 9 H), 6.73 (d, J = 8.7 Hz, 2 H), 7.00 (d, J = 16.2 Hz, 3 H), 7.05-7.11 (m, 6 H), 7.14 (d, J = 8.7 Hz, 2 H), 7.20-7.31 (m, 6 H), 7.34 (d, J = 5.4 Hz, 3 H), 7.35 (d, J = 16.2 Hz, 3 H), 7.45-7.54 (m, 9 H). 13C NMR (75 MHz, CDCl3): δ = 20.2, 63.7, 114.3, 124.4, 126.1, 126.5, 127.4, 128.6, 129.1, 129.7, 132.2, 132.7, 133.7, 134.7, 137.8, 139.2, 146.3, 153.4. Compound 12: mp 220-224 °C (CHCl3-MeOH). IR (KBr): 3300, 1600, 1510, 1440, 1280 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.33 (s, 27 H), 2.34 (s, 9 H), 4.67 (br s, 1 H), 6.72 (d, J = 8.5 Hz, 2 H), 6.98 (d, J = 16 Hz, 3 H), 7.04-7.11 (m, 6 H), 7.14 (d, J = 8.3 Hz, 2 H), 7.26 (d, J = 16 Hz, 3 H), 7.37 (d, J = 8.2 Hz, 6 H), 7.45 (d, J = 8.8 Hz, 6 H), 7.48 (d, J = 9.2 Hz, 3 H).
15
Meier H.
Angew. Chem., Int. Ed. Engl.
1992,
31:
1399