Zusammenfassung
Biologische Therapien bei der Behandlung der chronisch-entzündlichen Darmerkrankungen spiegeln den exponenziellen Wissenszuwachs über das menschliche Immunsystem und insbesondere über die Mechanismen von intestinalen Entzündungen in der letzten Dekade wider. Das bessere Verständnis der (Entzündungs-)Mechanismen chronisch-entzündlicher Darmerkrankungen ist das Ergebnis klinischer Forschung und der Untersuchungen an genetisch manipulierten Tiermodellen. Es hat großes Interesse an der Entwicklung und Erprobung neuer Medikamente mit neuartigen Wirkmechanismen hervorgerufen. Diese Übersicht gibt einen Überblick über die Wirkmechanismen von Biologika (Antikörper gegen proinflammatorische Zytokine, Antikörper gegen T-Zellen, antiinflammatorische Zytokine, Adhäsionsmolkülblocker, Wachstumsfaktoren, Hormone, koloniestimulierende Faktoren, Fusionsproteine, Antisense-Oligonukleotide, Trefoil-Peptide, immunostimulierende [ISS] DNS) bei chronisch-entzündlichen Darmerkrankungen. Die Daten sowohl zu etablierten biologischen Therapien als auch in Erprobung befindlicher Substanzen werden diskutiert. Probiotika finden kurze Erwähnung. Die besprochenen Daten lassen erwarten, dass Biologika eine wichtige Rolle bei der Behandlung chronisch-entzündlicher Darmerkrankungen in naher Zukunft spielen werden.
Abstract
Biological therapies in inflammatory bowel disease reflect the exponential advancement in understanding the human intestinal immune system and particularly the biology of intestinal inflammation during the past decade. The better understanding of the mechanisms of inflammatory bowel disease has evolved from desriptive clinical data and genetically engineered animal models. It led to great interest in the evaluation of a variety of new therapeutic agents with novel actions. This review will discuss the mechanisms of biologicals (antibodies against pro-inflammatory cytokines, T cell antibodies, anti-inflammtory cytokines, adhesion molecule blockers, growth factors, hormones, colony stimulating factors, fusion proteins, anti-sense oligonucleotides, trefoil peptides, immunostimulatory [ISS] DNA) used in the treatment of inflammatory bowel disease and summarizes the available data on established biologic therapies as well as investigational agents and briefly touch on probiotics. Based on the data discussed, it seems that biologicals will play an important role in managing inflammatory bowel disease in the near future.
Schlüsselwörter
Morbus Crohn - Colitis ulcerosa - Antikörper - Immunsuppressiva - Zytokine - Probiotika
Key words
Crohn’s disease - ulcerative colitis - antibody - immunosuppressive therapy - cytokines - probiotics
Literatur
1
Delves P J, Roitt I M.
The immune system. First of two parts.
N Engl J Med.
2000;
343
37-49
2
Delves P J, Roitt I M.
The immune system. Second of two parts.
N Engl J Med.
2000;
343
108-117
3
Parkin J, Cohen B.
An overview of the immune system.
Lancet.
2001;
357
1777-1789
4
Blumberg R S, Strober W.
Prospects for research in inflammatory bowel disease.
JAMA.
2001;
285
643-647
5
Baumgart D C, Dignass A U.
Intestinal barrier function.
Curr Opin Clin Nutr Metab Care.
2002;
5
685-694
6
Breedveld F C.
Therapeutic monoclonal antibodies.
Lancet.
2000;
355
735-740
7
Romagnani S.
Th1/Th2 cells.
Inflammatory Bowel Diseases.
1999;
5
285-294
8
Anonymus. I nterleukin-10.
Cytokine synthesis inhibitory factor, SCH 52000, rIL-10, rhIL-10.
Drugs R D.
1999;
1
262-264
9
Berg D J, Davidson N, Kuhn R. et al .
Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses.
J Clin Invest.
1996;
98
1010-1020
10
Davidson N J, Leach M W, Fort M M. et al .
T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice.
J Exp Med.
1996;
184
241-251
11
Duchmann R, Schmitt E, Knolle P. et al .
Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12.
Eur J Immunol.
1996;
26
934-938
12
Powrie F, Leach M W, Mauze S. et al .
Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells.
Immunity.
1994;
1
553-562
13
Rennick D M, Fort M M.
Lessons from genetically engineered animal models - XII. IL-10-deficient (IL-10(-/-)) mice and intestinal inflammation.
American Journal of Physiology-Gastrointestinal and Liver Physiology.
2000;
278
G829-G833
14
Autenrieth I B, Bucheler N, Bohn E. et al .
Cytokine mRNA expression in intestinal tissue of interleukin-2 deficient mice with bowel inflammation.
Gut.
1997;
41
793-800
15
Groux H, O’Garra A, Bigler M. et al .
A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.
Nature.
1997;
389
737-742
16
Berg D J, Zhang J, Weinstock J V. et al .
Rapid development of colitis in NSAID-treated IL-10-deficient mice.
Gastroenterology.
2002;
123
1527-1542
17
Kucharzik T, Stoll R, Lugering N. et al .
Circulating antiinflammatory cytokine IL-10 in patients with inflammatory bowel disease (IBD).
Clin Exp Immunol.
1995;
100
452-456
18
Niessner M, Volk B A.
Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR).
Clin Exp Immunol.
1995;
101
428-435
19
Meresse B, Rutgeerts P, Malchow H. et al .
Low ileal interleukin 10 concentrations are predictive of endoscopic recurrence in patients with Crohn’s disease.
Gut.
2002;
50
25-28
20
Schreiber S, Heinig T, Thiele H G. et al .
Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease.
Gastroenterology.
1995;
108
1434-1444
21
vanDeventer S JH, Elson C O, Fedorak R N.
Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease.
Gastroenterology.
1997;
113
383-389
22
Fedorak R N, Gangl A, Elson C O. et al .
Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease.
Gastroenterology.
2000;
119
1473-1482
23
Gasche C, Bakos S, Dejaco C. et al .
IL-10 secretion and sensitivity in normal human intestine and inflammatory bowel disease.
J Clin Immunol.
2000;
20
362-370
24
Schreiber S, Fedorak R N, Nielsen O H. et al .
Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease.
Gastroenterology.
2000;
119
1461-1472
25
Schreiber S, Fedorak R N, Nielsen O H. et al .
Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group.
Gastroenterology.
2000;
119
1461-1472
26
Colombel J F, Rutgeerts P, Malchow H. et al .
Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease.
Gut.
2001;
49
42-46
27
Steidler L, Hans W, Schotte L. et al .
Treatment of murine colitis by Lactococcus lactis secreting interleukin-10.
Science.
2000;
289
1352-1355
28
Nakase H, Okazaki K, Tabata Y. et al .
New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease.
J Pharmacol Exp Ther.
2002;
301
59-65
29
Du X X, Williams D A.
Interleukin-11: Review of molecular, cell biology, and clinical use.
Blood.
1997;
89
3897-3908
30
Sitaraman S V, Gewirtz A T.
Oprelvekin. Genetics Institute.
Curr Opin Investig Drugs.
2001;
2
1395-1400
31
Keith J C Jr, Albert L, Sonis S T. et al .
IL-11, a pleiotropic cytokine: exciting new effects of IL-11 on gastrointestinal mucosal biology.
Stem Cells.
1994;
12 Suppl 1
79-89
32
Baumgart D C, Dignass A U.
Intestinal barrier function.
Curr Opin Clin Nutr Metab Care.
2002;
5
685-694
33
Qiu B S, Pfeiffer C J, Keith J C Jr.
Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats.
Dig Dis Sci.
1996;
41
1625-1630
34
Peterson R L, Wang L, Albert L. et al .
Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease.
Lab Invest.
1998;
78
1503-1512
35
Van Greenwood-Meerveld B, Tyler K, Keith J C Jr.
Recombinant human interleukin-11 modulates ion transport and mucosal inflammation in the small intestine and colon.
Lab Invest.
2000;
80
1269-1280
36
Sands B E, Bank S, Sninsky C A. et al .
Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease.
Gastroenterology.
1999;
117
58-64
37
Sands B E, Winston B D, Salzberg B. et al .
Randomized, controlled trial of recombinant: human interleukin-11 in patients with active Crohn’s disease.
Alimentary Pharmacology & Therapeutics.
2002;
16
399-406
38
Nikolaus S, Rutgeerts P, Fedorak R N. et al .
Recombinant human interferon-beta (IFN-β-1 alpha) induces remission and is well tolerated in moderately active ulcerative colitis (UC).
Gastroenterology.
2001;
120
2312
39
Musch E, Andus T, Malek M.
Induction and maintenance of clinical remission by interferon-beta in patients with steroid-refractory active ulcerative colitis-an open long-term pilot trial.
Aliment Pharmacol Ther.
2002;
16
1233-1239
40
Scallon B J, Moore M A, Trinh H. et al .
Chimeric Anti-Tnf-Alpha Monoclonal-Antibody Ca2 Binds Recombinant Transmembrane Tnf-Alpha and Activates Immune Effector Functions.
Cytokine.
1995;
7
251-259
41
Targan S R, Hanauer S B, vanDeventer S JH. et al .
A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease.
New England Journal of Medicine.
1997;
337
1029-1035
42
Papadakis K A, Targan S R.
Tumor necrosis factor: Biology and therapeutic inhibitors.
Gastroenterology.
2000;
119
1148-1157
43
Sands B E, Tremaine W J, Sandborn W J. et al .
Infliximab in the treatment of severe, steroid-refractory ulcerative colitis: A pilot study.
Inflammatory Bowel Diseases.
2001;
7
83-88
44
CDP 5 71.
Anti-TNF monoclonal antibody, BAY 103356.
Drugs R D.
1999;
1
253-255
45
Sandborn W J, Feagan B G, Hanauer S B. et al .
An engineered human antibody to TNF (CDP571) for active Crohn’s disease: A randomized double-blind placebo-controlled trial.
Gastroenterology.
2001;
120
1330-1338
46
Stack W A, Mann S D, Roy A J. et al .
Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease.
Lancet.
1997;
349
521-524
47
Feagan B G, Sandborn W J, Baker J P. et al .
A randomized, double-blind, placebo-controlled, multi-center trial of the engineered human antibody to TNF (CDP571) for steroid sparing and maintenance of remission in patients with steroid-dependent Crohn’s disease.
Gastroenterology.
2000;
118
3599
48
Sandborn W J, Feagan B G, Hanauer S B. et al .
An engineered human antibody to TNF (CDP571) for active Crohn’s disease: a randomized double-blind placebo-controlled trial.
Gastroenterology.
2001;
120
1330-1338
49
Evans R C, Clarke L, Heath P. et al .
Treatment of ulcerative colitis with an engineered human anti-TNF-α antibody CDP571.
Alimentary Pharmacology & Therapeutics.
1997;
11
1031-1035
50
Brown S L, Greene M H, Gershon S K. et al .
Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration.
Arthritis Rheum.
2002;
46
3151-3158
51
Sandborn W J, Hanauer S B.
Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety.
Inflamm Bowel Dis.
1999;
5
119-133
52
Anonymus. E tanercept.
Soluble tumour necrosis factor receptor, TNF receptor fusion protein, TNFR-Fc, TNR 001, Enbrel.
Drugs R D.
1999;
1
258-261
53
Nash C L, Panaccione R, Sutherland L R. et al .
Giant cell myocarditis, in a patient with Crohn’s disease, treated with etanercept - a tumour necrosis factor-alpha antagonist.
Can J Gastroenterol.
2001;
15
607-611
54
Zeltser R, Valle L, Tanck C. et al .
Clinical, histological, and immunophenotypic characteristics of injection site reactions associated with etanercept: a recombinant tumor necrosis factor alpha receptor: Fc fusion protein.
Arch Dermatol.
2001;
137
893-899
55
Marzo-Ortega H, McGonagle D, O’Connor P. et al .
Efficacy of etanercept for treatment of Crohn’s related spondyloarthritis but not colitis.
Ann Rheum Dis.
2003;
62
74-76
56
D’Haens G, Swijsen C, Noman M. et al .
Etanercept in the treatment of active refractory Crohn’s disease: A single-center pilot trial.
American Journal of Gastroenterology.
2001;
96
2564-2568
57
Sandborn W J, Hanauer S B, Katz S. et al .
Etanercept for active Crohn’s disease: A randomized, double-blind, placebo-controlled trial.
Gastroenterology.
2001;
121
1088-1094
58
Srivastava M D.
Immunomodulatory effects of etanercept (TNFR: Fc) and its use in a patient with Crohn’s disease.
Res Commun Mol Pathol Pharmacol.
2001;
109
125-141
59
Trinchard-Lugan I, Ho-Nguyen Q, Bilham W M. et al .
Safety, pharmacokinetics and pharmacodynamics of recombinant human tumour necrosis factor-binding protein-1 (Onercept) injected by intravenous, intramuscular and subcutaneous routes into healthy volunteers.
Eur Cytokine Netw.
2001;
12
391-398
60
Rutgeerts P, Lemmens L, Van Assche G. et al .
Recombinant soluble p55 TNF receptor induces remission, is non-immunogenic and well tolerated in active Crohn’s disease: Results of a randomized pilot trial.
Gastroenterology.
2001;
120
2304
61
Bjork L, Tracey K J, Ulrich P. et al .
Targeted suppression of cytokine production in monocytes but not in T lymphocytes by a tetravalent guanylhydrazone (CNI-1493).
J Infect Dis.
1997;
176
1303-1312
62
Tracey K J.
Suppression of TNF and other proinflammatory cytokines by the tetravalent guanylhydrazone CNI-1493.
Prog Clin Biol Res.
1998;
397
335-343
63
Bianchi M, Ulrich P, Bloom O. et al .
An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality.
Mol Med.
1995;
1
254-266
64
Cohen P S, Nakshatri H, Dennis J. et al .
CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency.
Proc Natl Acad Sci U S A.
1996;
93
3967-3971
65
Hunt A E, Lali F V, Lord J D. et al .
Role of interleukin (IL)-2 receptor beta-chain subdomains and Shc in p38 mitogen-activated protein (MAP) kinase and p54 MAP kinase (stress-activated protein Kinase/c-Jun N-terminal kinase) activation. IL-2-driven proliferation is independent of p38 and p54 MAP kinase activation.
J Biol Chem.
1999;
274
7591-7597
66
Denham W, Yang J, Wang H. et al .
Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis-induced adult respiratory distress syndrome.
Crit Care Med.
2000;
28
2567-2572
67
Lee J C, Kumar S, Griswold D E. et al .
Inhibition of p38 MAP kinase as a therapeutic strategy.
Immunopharmacology.
2000;
47
185-201
68
Salituro F G, Germann U A, Wilson K P. et al .
Inhibitors of p38 MAP kinase: Therapeutic intervention in cytokine-mediated diseases.
Current Medicinal Chemistry.
1999;
6
807-823
69
Amiot F, Fitting C, Tracey K J. et al .
Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha/TNF-α-deficient mice.
Mol Med.
1997;
3
864-875
70
Martiney J A, Rajan A J, Charles P C. et al .
Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent.
J Immunol.
1998;
160
5588-5595
71
Yang J, Denham W, Tracey K J. et al .
The physiologic consequences of macrophage pacification during severe acute pancreatitis.
Shock.
1998;
10
169-175
72
Yang J, Denham W, Carter G. et al .
Macrophage pacification reduces rodent pancreatitis-induced hepatocellular injury through down-regulation of hepatic tumor necrosis factor alpha and interleukin-1beta.
Hepatology.
1998;
28
1282-1288
73
Yang X, Szabolcs M, Minanov O. et al .
CNI-1493 prolongs survival and reduces myocyte loss, apoptosis, and inflammation during rat cardiac allograft rejection.
J Cardiovasc Pharmacol.
1998;
32
146-155
74
D’Souza M J, Oettinger C W, Milton G V. et al .
Prevention of lethality and suppression of proinflammatory cytokines in experimental septic shock by microencapsulated CNI-1493.
J Interferon Cytokine Res.
1999;
19
1125-1133
75
Kerlund K, Erlandsson H H, Tracey K J. et al .
Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-α) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats.
Clin Exp Immunol.
1999;
115
32-41
76
Granert C, Abdalla H, Lindquist L. et al .
Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic Haemophilus influenzae infection.
Infect Immun.
2000;
68
5329-5334
77
Palmblad K, Erlandsson-Harris H, Tracey K J. et al .
Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis : a therapeutic study using a macrophage-deactivating compound.
Am J Pathol.
2001;
158
491-500
78
Atkins M B, Redman B, Mier J. et al .
A phase I study of CNI-1493, an inhibitor of cytokine release, in combination with high-dose interleukin-2 in patients with renal cancer and melanoma.
Clin Cancer Res.
2001;
7
486-492
79
Hommes D, Van Den Blink B, Plasse T. et al .
Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease.
Gastroenterology.
2002;
122
7-14
80
Thalidomide - a possible alternative as an immunomodulating agent].
Lakartidningen.
1989;
86
4260-4262
81
Sands B E, Podolsky D K.
New life in a sleeper: thalidomide and Crohn’s disease.
Gastroenterology.
1999;
117
1485-1488
82
De Cock K M.
Treatment of ulcerative colitis.
Br Med J.
1979;
1
1356
83
Waters M F, Laing A B, Ambikapathy A. et al .
Treatment of ulcerative colitis with thalidomide.
Br Med J.
1979;
1
792
84
Odeka E B, Miller V.
Thalidomide in oral Crohn’s disease refractory to conventional medical treatment.
J Pediatr Gastroenterol Nutr.
1997;
25
250-251
85
Wettstein A R, Meagher A P.
Thalidomide in Crohn’s disease.
Lancet.
1997;
350
1445-1446
86
Weinstein T A, Sciubba J J, Levine J.
Thalidomide for the treatment of oral aphthous ulcers in Crohn’s disease.
J Pediatr Gastroenterol Nutr.
1999;
28
214-216
87
Ginsburg P M, Hanan I, Ehrenpreis E D.
Treatment of severe esophageal Crohn’s disease with thalidomide.
Am J Gastroenterol.
2001;
96
1305-1306
88
Generini S, Fiori G, Matucci C M.
Therapy of spondylarthropathy in inflammatory bowel disease.
Clin Exp Rheumatol.
2002;
20
S88-S94
89
Kane S, Stone L J, Ehrenpreis E.
Thalidomide as ”salvage” therapy for patients with delayed hypersensitivity response to infliximab: a case series.
J Clin Gastroenterol.
2002;
35
149-150
90
Vasiliauskas E A, Kam L Y, Abreu-Martin M T. et al .
An open-label pilot study of low-dose thalidomide in chronically active, steroid-dependent Crohn’s disease.
Gastroenterology.
1999;
117
1278-1287
91
Ehrenpreis E D, Kane S V, Cohen L B. et al .
Thalidomide therapy for patients with refractory Crohn’s disease: An open-label trial.
Gastroenterology.
1999;
117
1271-1277
92
Pare P.
Management of fistulas in patients with Crohn’s disease: antibiotic to antibody.
Can J Gastroenterol.
2001;
15
751-756
93
Sabate J M, Villarejo J, Lemann M. et al .
An open-label study of thalidomide for maintenance therapy in responders to infliximab in chronically active and fistulizing refractory Crohn’s disease.
Aliment Pharmacol Ther.
2002;
16
1117-1124
94
Lantz M, Thysell H, Nilsson E. et al .
On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin.
J Clin Invest.
1991;
88
2026-2031
95
Gaffney P R, Doyle C T, Gaffney A. et al .
Paradoxical response to heparin in 10 patients with ulcerative colitis.
Am J Gastroenterol.
1995;
90
220-223
96
Folwaczny C, Wiebecke B, Loeschke K.
Unfractioned heparin in the therapy of patients with highly active inflammatory bowel disease.
Am J Gastroenterol.
1999;
94
1551-1555
97
Torkvist L, Thorlacius H, Sjoqvist U. et al .
Low molecular weight heparin as adjuvant therapy in active ulcerative colitis.
Aliment Pharmacol Ther.
1999;
13
1323-1328
98
Ang Y S, Mahmud N, White B. et al .
Randomized comparison of unfractionated heparin with corticosteroids in severe active inflammatory bowel disease.
Aliment Pharmacol Ther.
2000;
14
1015-1022
99
Dotan I, Hallak A, Arber N. et al .
Low-dose low-molecular weight heparin (enoxaparin) is effective as adjuvant treatment in active ulcerative colitis: an open trial.
Dig Dis Sci.
2001;
46
2239-2244
100
Vrij A A, Jansen J M, Schoon E J. et al .
Low molecular weight heparin treatment in steroid refractory ulcerative colitis: clinical outcome and influence on mucosal capillary thrombi.
Scand J Gastroenterol Suppl.
2001;
41-47
101
Prajapati D N, Newcomer J R, Emmons J. et al .
Successful treatment of an acute flare of steroid-resistant Crohn’s colitis during pregnancy with unfractionated heparin.
Inflamm Bowel Dis.
2002;
8
192-195
102
Fuss I J, Marth T, Neurath M F. et al .
Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice.
Gastroenterology.
1999;
117
1078-1088
103
Groux H, OGarra A, Bigler M. et al .
A CD4(+) T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.
Nature.
1997;
389
737-742
104
Duchmann R, Schmitt E, Knolle P. et al .
Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12.
European Journal of Immunology.
1996;
26
934-938
105
Camoglio L, Juffermans N P, Peppelenbosch M. et al .
Contrasting roles of IL-12p40 and IL-12p35 in the development of hapten-induced colitis.
Eur J Immunol.
2002;
32
261-269
106
Dinarello C A.
Interleukin-18, a proinflammatory cytokine.
Eur Cytokine Netw.
2000;
11
483-486
107
Chikano S, Sawada K, Shimoyama T. et al .
IL-18 and IL-12 induce intestinal inflammation and fatty liver in mice in an IFN-γ dependent manner.
Gut.
2000;
47
779-786
108
Monteleone G, Trapasso F, Parrello T. et al .
Bioactive IL-18 expression is up-regulated in Crohn’s disease.
J Immunol.
1999;
163
143-147
109
Pizarro T T, Michie M H, Bentz M. et al .
IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells.
J Immunol.
1999;
162
6829-6835
110
Kanai T, Watanabe M, Okazawa A. et al .
Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn’s disease.
Gastroenterology.
2000;
119
1514-1523
111
Kanai T, Watanabe M, Okazawa A. et al .
Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn’s disease.
Gastroenterology.
2001;
121
875-888
112
ten H ove T, Corbaz A, Amitai H. et al .
Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-α production in mice.
Gastroenterology.
2001;
121
1372-1379
113
Sivakumar P V, Westrich G M, Kanaly S. et al .
Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage.
Gut.
2002;
50
812-820
114
Wirtz S, Becker C, Blumberg R. et al .
Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA.
J Immunol.
2002;
168
411-420
115
Holmes S, Abrahamson J A, Al M ahdi N. et al .
Characterization of the in vitro and in vivo activity of monoclonal antibodies to human IL-18.
Hybridoma.
2000;
19
363-367
116
von Andrian U H, Engelhardt B.
Alpha4 integrins as therapeutic targets in autoimmune disease.
N Engl J Med.
2003;
348
68-72
117
Podolsky D K, Lobb R, King N. et al .
Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody.
J Clin Invest.
1993;
92
372-380
118
Hesterberg P E, Winsor-Hines D, Briskin M J. et al .
Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7.
Gastroenterology.
1996;
111
1373-1380
119
Sheremata W A, Vollmer T L, Stone L A. et al .
A safety and pharmacokinetic study of intravenous natalizumab in patients with MS.
Neurology.
1999;
52
1072-1074
120
Tubridy N, Behan P O, Capildeo R. et al .
The effect of anti-alpha4 integrin antibody on brain lesion activity in MS.
The UK Antegren Study Group. Neurology.
1999;
53
466-472
121
Miller D H, Khan O A, Sheremata W A. et al .
A controlled trial of natalizumab for relapsing multiple sclerosis.
N Engl J Med.
2003;
348
15-23
122
Gordon F H, Lai C WY, Hamilton M I. et al .
A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha 4 integrin in active Crohn’s disease.
Gastroenterology.
2001;
121
268-274
123
Gordon F H, Hamilton M I, Donoghue S. et al .
A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin.
Aliment Pharmacol Ther.
2002;
16
699-705
124
Ghosh S, Goldin E, Gordon F H. et al .
Natalizumab for active Crohn’s disease.
N Engl J Med.
2003;
348
24-32
125
Marshall J K.
LDP-02 (Millenium).
Curr Opin Investig Drugs.
2001;
2
502-504
126
Hesterberg P E, WinsorHines D, Briskin M J. et al .
Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7.
Gastroenterology.
1996;
111
1373-1380
127
Feagan B G, McDonald J, Greenberg G. et al .
An ascending dose trial of a humanized A(4)B(7) antibody in ulcerative colitis (UC).
Gastroenterology.
2000;
118
4851
128
Askari F K, McDonnell W M.
Molecular medicine - Antisense oligonucleotide therapy.
New England Journal of Medicine.
1996;
334
316-318
129
ISIS 2 302.
Oligo-TCS.
Drugs R D.
1999;
1
265-267
130
Yacyshyn B R, Bowen-Yacyshyn M B, Jewell L. et al .
A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease.
Gastroenterology.
1998;
114
1133-1142
131
Gewirtz A T, Sitaraman S.
Alicaforsen. Isis Pharmaceuticals.
Curr Opin Investig Drugs.
2001;
2
1401-1406
132
Yacyshyn B R, Chey W Y, Goff J. et al .
Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease.
Gut.
2002;
51
30-36
133
Schreiber S, Nikolaus S, Malchow H. et al .
Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease.
Gastroenterology.
2001;
120
1339-1346
134
Yacyshyn B R, Chey W Y, Goff J. et al .
A randomized, placebo-controlled trial of an antisense ICAM-1 inhibitor (ISIS 2302) in steroid-dependent Crohn’s disease showed clinical improvement at high serum levels.
Gastroenterology.
2001;
120
1447
135
Choy E H, Chikanza I C, Kingsley G H. et al .
Treatment of rheumatoid arthritis with single dose or weekly pulses of chimaeric anti-CD4 monoclonal antibody.
Scand J Immunol.
1992;
36
291-298
136
Dalesandro M R, Pak K Y, Tam S. et al .
Effects of isotype and Fc region on in vitro function of a mouse/human chimeric CD4 antibody.
Int Immunol.
1993;
5
283-291
137
Jonker M, Slingerland W, Treacy G. et al .
In vivo treatment with a monoclonal chimeric anti-CD4 antibody results in prolonged depletion of circulating CD4+ cells in chimpanzees.
Clin Exp Immunol.
1993;
93
301-307
138
Moreland L W, Pratt P W, Sanders M E. et al .
Experience with a chimeric monoclonal anti-CD4 antibody in the treatment of refractory rheumatoid arthritis.
Clin Exp Rheumatol.
1993;
11 Suppl 8
S153-S159
139
van der Lubbe P A, Reiter C, Breedveld F C. et al .
Chimeric CD4 monoclonal antibody cM-T412 as a therapeutic approach to rheumatoid arthritis.
Arthritis Rheum.
1993;
36
1375-1379
140
Ahlberg R, Yi Q, Pirskanen R. et al .
Treatment of myasthenia gravis with anti-CD4 antibody: improvement correlates to decreased T-cell autoreactivity.
Neurology.
1994;
44
1732-1737
141
Lindsey J W, Hodgkinson S, Mehta R. et al .
Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis.
Ann Neurol.
1994;
36
183-189
142
Lindsey J W, Hodgkinson S, Mehta R. et al .
Phase 1 clinical trial of chimeric monoclonal anti-CD4 antibody in multiple sclerosis.
Neurology.
1994;
44
413-419
143
Meiser B M, Reiter C, Reichenspurner H. et al .
Chimeric monoclonal CD4 antibody - a novel immunosuppressant for clinical heart transplantation.
Transplantation.
1994;
58
419-423
144
Prinz J C, Meurer M, Reiter C. et al .
Treatment of severe cutaneous lupus erythematosus with a chimeric CD4 monoclonal antibody, cM-T412.
J Am Acad Dermatol.
1996;
34
244-252
145
Llewellyn-Smith N, Lai M, Miller D H. et al .
Effects of anti-CD4 antibody treatment on lymphocyte subsets and stimulated tumor necrosis factor alpha production: a study of 29 multiple sclerosis patients entered into a clinical trial of cM-T412.
Neurology.
1997;
48
810-816
146
Stronkhorst A, Radema S, Yong S L. et al .
CD4 antibody treatment in patients with active Crohn’s disease: a phase 1 dose finding study.
Gut.
1997;
40
320-327
147
Moreland L W, Pratt P W, Bucy R P. et al .
Treatment of refractory rheumatoid arthritis with a chimeric anti-CD4 monoclonal antibody. Long-term followup of CD4+ T cell counts.
Arthritis Rheum.
1994;
37
834-838
148
Rep M H, van Oosten B W, Roos M T. et al .
Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-γ secreting TH1 cells in humans.
J Clin Invest.
1997;
99
2225-2231
149
Lopez E, Racadot E, Bataillard M. et al .
Interferon gamma, IL2, IL4, IL10 and TNFalpha secretions in multiple sclerosis patients treated with an anti-CD4 monoclonal antibody.
Autoimmunity.
1999;
29
87-92
150
Rohde M, Schenk J A, Heymann S. et al .
Production and characterization of monoclonal antibodies against urea derivatives.
Appl Biochem Biotechnol.
1998;
75
129-137
151
Rumbach L, Racadot E, Armspach J P. et al .
Biological assessment and MRI monitoring of the therapeutic efficacy of a monoclonal anti-T CD4 antibody in multiple sclerosis patients.
Mult Scler.
1996;
1
207-212
152
CanvaDelcambre V, Jacquot S, Robinet E. et al .
Treatment of severe Crohn’s disease with anti-CD4 monoclonal antibody.
Alimentary Pharmacology & Therapeutics.
1996;
10
721-727
153
Horneff G, Guse A H, Schulze-Koops H. et al .
Human CD4 modulation in vivo induced by antibody treatment.
Clin Immunol Immunopathol.
1993;
66
80-90
154
Wang J, Yan T, Simmer B. et al .
The effect of anti-CD4 on helper function of CD4,45RA+ versus CD4,45RO+ T cells.
Clin Exp Immunol.
1994;
95
128-134
155
Horneff G, Dirksen U, Schulze-Koops H. et al .
Treatment of refractory juvenile chronic arthritis by monoclonal CD4 antibodies: a pilot study in two children.
Ann Rheum Dis.
1995;
54
846-849
156
Brink I, Thiele B, Burmester G R. et al .
Effects of anti-CD4 antibodies on the release of IL-6 and TNF-α in whole blood samples from patients with systemic lupus erythematosus.
Lupus.
1999;
8
723-730
157
Laub R, Brecht R, Dorsch M. et al .
Anti-human CD4 induces peripheral tolerance in a human CD4+, murine CD4-, HLA-DR+ advanced transgenic mouse model.
J Immunol.
2002;
169
2947-2955
158
Guse A H, Tsygankov A Y, Broker B M. et al .
Signal transduction in T lymphocytes and monocytes: effects of the anti-CD4 antibody MAX.16H5.
Year Immunol.
1993;
7
175-181
159
Emmrich J, Seyfarth M, Liebe S. et al .
Anti-Cd4-Antibody Treatment in Inflammatory Bowel-Disease Without A Long Cd4+-Cell Depletion.
Gastroenterology.
1995;
108
A815
160
Emmrich J, Seyfarth M, Fleig W E. et al .
Treatment of inflammatory bowel disease with anti-CD4 monoclonal antibody.
Lancet.
1991;
338
570-571
161
Wright N A, Pike C, Elia G.
Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells.
Nature.
1990;
343
82-85
162
Alexander R J, Panja A, Kaplan-Liss E. et al .
Expression of growth factor receptor-encoded mRNA by colonic epithelial cells is altered in inflammatory bowel disease.
Dig Dis Sci.
1995;
40
485-494
163
Chowdhury A, Fukuda R, Fukumoto S.
Growth factor mRNA expression in normal colorectal mucosa and in uninvolved mucosa from ulcerative colitis patients.
J Gastroenterol.
1996;
31
353-360
164
Malecka-Panas E, Kordek R, Biernat W. et al .
Differential activation of total and EGF receptor (EGF-R) tyrosine kinase (tyr-k) in the rectal mucosa in patients with adenomatous polyps, ulcerative colitis and colon cancer.
Hepatogastroenterology.
1997;
44
435-440
165
Hall F L, Kaiser A, Liu L. et al .
Design, expression, and renaturation of a lesion-targeted recombinant epidermal growth factor-von Willebrand factor fusion protein: efficacy in an animal model of experimental colitis.
Int J Mol Med.
2000;
6
635-643
166
Banan A, Fields J Z, Talmage D A. et al .
PKC-zeta is required in EGF protection of microtubules and intestinal barrier integrity against oxidant injury.
Am J Physiol Gastrointest Liver Physiol.
2002;
282
G794-G808
167
Sinha A, Nightingale J M, West K P. et al .
Epidermal growth factor enemas are effective in the treatment of left-sided ulcerative colitis.
Gastroenterology.
2001;
120
55
168
Beck P L, Podolsky D K.
Growth factors in inflammatory bowel disease.
Inflammatory Bowel Diseases.
1999;
5
44-60
169
Dignass A U, Sturm A.
Peptide growth factors in the intestine.
Eur J Gastroenterol Hepatol.
2001;
13
763-770
170
Brauchle M, Madlener M, Wagner A D. et al .
Keratinocyte growth factor is highly overexpressed in inflammatory bowel disease.
Am J Pathol.
1996;
149
521-529
171
Finch P W, Pricolo V, Wu A. et al .
Increased expression of keratinocyte growth factor messenger RNA associated with inflammatory bowel disease.
Gastroenterology.
1996;
110
441-451
172
Bajaj-Elliott M, Breese E, Poulsom R. et al .
Keratinocyte growth factor in inflammatory bowel disease. Increased mRNA transcripts in ulcerative colitis compared with Crohn’s disease in biopsies and isolated mucosal myofibroblasts.
Am J Pathol.
1997;
151
1469-1476
173
Han D S, Li F L, Holt L. et al .
Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats.
American Journal of Physiology-Gastrointestinal and Liver Physiology.
2000;
279
G1011-G1022
174
Miceli R, Hubert M, Santiago G. et al .
Efficacy of keratinocyte growth factor-2 in dextran sulfate sodium-induced murine colitis.
Journal of Pharmacology and Experimental Therapeutics.
1999;
290
464-471
175
Werner S.
Keratinocyte growth factor: A unique player in epithelial repair processes.
Cytokine & Growth Factor Reviews.
1998;
9
153-165
176
Dignass A U.
Mechanisms and modulation of intestinal epithelial repair.
Inflamm Bowel Dis.
2001;
7
68-77
177
Poulsom R, Chinery R, Sarraf C. et al .
Trefoil peptide expression in intestinal adaptation and renewal.
Scand J Gastroenterol Suppl.
1992;
192
17-28
178
Dignass A, Lynch-Devaney K, Kindon H. et al .
Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway.
J Clin Invest.
1994;
94
376-383
179
Dignass A U, Sturm A.
Peptide growth factors in the intestine.
Eur J Gastroenterol Hepatol.
2001;
13
763-770
180
Byrne F R, Farrell C L, Aranda R. et al .
rHuKGF ameliorates symptoms in DSS and CD4(+)CD45RB(Hi) T cell transfer mouse models of inflammatory bowel disease.
Am J Physiol Gastrointest Liver Physiol.
2002;
282
G690-G701
181
McCaffery T D, Nasr K, Lawrence A M. et al .
Severe growth retardation in children with inflammatory bowel disease.
Pediatrics.
1970;
45
386-393
182
Gotlin R W, Dubois R S.
Nyctohemeral growth hormone levels in children with growth retardation and inflammatory bowel disease.
Gut.
1973;
14
191-195
183
McCaffery T D Jr, Nasr K, Lawrence A M. et al .
Effect of administered human growth hormone on growth retardation in inflammatory bowel disease.
Am J Dig Dis.
1974;
19
411-416
184
Green J R, O’Donoghue D P, Edwards C R. et al .
A case of apparent hypopituitarism complicating chronic inflammatory bowel disease in childhood and adolescence.
Acta Paediatr Scand.
1977;
66
643-647
185
Tenore A, Berman W F, Parks J S. et al .
Basal and stimulated serum growth hormone concentrations in inflammatory bowel disease.
J Clin Endocrinol Metab.
1977;
44
622-628
186
Kirschner B S, Voinchet O, Rosenberg I H.
Growth retardation in inflammatory bowel disease.
Gastroenterology.
1978;
75
504-511
187
Kelts D G, Grand R J, Shen G. et al .
Nutritional basis of growth failure in children and adolescents with Crohn’s disease.
Gastroenterology.
1979;
76
720-727
188
Henker J.
Therapy with recombinant growth hormone in children with Crohn disease and growth failure.
Eur J Pediatr.
1996;
155
1066-1067
189
Kotake M, Nakai A, Mokuno T. et al .
Short stature due to growth hormone deficiency associated with Cushing’s disease and ulcerative colitis.
Horm Metab Res.
1996;
28
565-569
190
Chen K, Nezu R, Inoue M. et al .
Beneficial effects of growth hormone combined with parenteral nutrition in the management of inflammatory bowel disease: an experimental study.
Surgery.
1997;
121
212-218
191
Jensen M B, Kissmeyer-Nielsen P, Laurberg S.
Perioperative growth hormone treatment increases nitrogen and fluid balance and results in short-term and long-term conservation of lean tissue mass.
Am J Clin Nutr.
1998;
68
840-846
192
Mauras N.
Growth hormone therapy in the glucocorticosteroid-dependent child: metabolic and linear growth effects.
Horm Res.
2001;
56 (Suppl 1)
13-18
193
Mauras N, George D, Evans J. et al .
Growth hormone has anabolic effects in glucocorticosteroid-dependent children with inflammatory bowel disease: a pilot study.
Metabolism.
2002;
51
127-135
194
Williams K L, Fuller C R, Dieleman L A. et al .
Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone.
Gastroenterology.
2001;
120
925-937
195
Slonim A E, Bulone L, Damore M B. et al .
A preliminary study of growth hormone therapy for Crohn’s disease.
New England Journal of Medicine.
2000;
342
1633-1637
196
Vaughan D, Drumm B.
Treatment of fistulas with granulocyte colony-stimulating factor in a patient with Crohn’s disease.
New England Journal of Medicine.
1999;
340
239-240
197
Korzenik J R, Dieckgraefe B K.
Immunostimulation in Crohn’s disease: Results of a pilot study of G-CSF (R-methug-CSF) in mucosal and fistulizing Crohn’s disease.
Gastroenterology.
2000;
118
4852
198
Korzenik J R, Dieckgraefe B K.
Immune stimulation in Crohn’s disease: Safety and efficacy of rhuGM-CSF for the treatment of active Crohn’s disease.
Gastroenterology.
2001;
120
1437
199
Dieckgraefe B K, Korzenik J R.
Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor.
Lancet.
2002;
360
1478-1480
200
Galloway M J, Mackie M J, McVerry B A.
Reduced levels of factor XIII in patients with chronic inflammatory bowel disease.
Clin Lab Haematol.
1983;
5
427-428
201
Wisen O, Gardlund B.
Hemostasis in Crohn’s disease: low factor XIII levels in active disease.
Scand J Gastroenterol.
1988;
23
961-966
202
Suzuki R, Toda H, Takamura Y.
Dynamics of blood coagulation factor XIII in ulcerative colitis and preliminary study of the factor XIII concentrate.
Blut.
1989;
59
162-164
203
Lorenz R, Heinmuller M, Classen M. et al .
Substitution of factor XIII: a therapeutic approach to ulcerative colitis.
Haemostasis.
1991;
21
5-9
204
Stadnicki A, Kloczko J, Nowak A. et al .
Factor XIII subunits in relation to some other hemostatic parameters in ulcerative colitis.
Am J Gastroenterol.
1991;
86
690-693
205
Oshitani N, Nakamura S, Matsumoto T. et al .
Treatment of Crohn’s disease fistulas with coagulation factor XIII.
Lancet.
1996;
347
119-120
206
Chamouard P, Grunebaum L, Wiesel M L. et al .
Significance of diminished factor XIII in Crohn’s disease.
Am J Gastroenterol.
1998;
93
610-614
207
Cario E, Goebell H, Dignass A U.
Factor XIII modulates intestinal epithelial wound healing in vitro.
Scand J Gastroenterol.
1999;
34
485-490
208
Pihusch R, Salat C, Gohring P. et al .
Factor XIII activity levels in patients with allogeneic haematopoietic stem cell transplantation and acute graft-versus-host disease of the gut.
Br J Haematol.
2002;
117
469-476
209
Bregenzer N, Caesar I, Andus T. et al .
Lack of clinical efficacy of additional factor XIII treatment in patients with steroid refractory colitis. The Factor XIII Study Group.
Z Gastroenterol.
1999;
37
999-1004
210
Forestier C, De Champs C, Vatoux C. et al .
Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties.
Res Microbiol.
2001;
152
167-173
211
Rembacken B J, Snelling A M, Hawkey P M. et al .
Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial.
Lancet.
1999;
354
635-639
212
McFarland L V, Surawicz C M, Greenberg R N. et al .
A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease.
JAMA.
1994;
271
1913-1918
213
Surawicz C M, McFarland L V, Elmer G. et al .
Treatment of recurrent Clostridium difficile colitis with vancomycin and Saccharomyces boulardii.
Am J Gastroenterol.
1989;
84
1285-1287
214
Surawicz C M, Elmer G W, Speelman P. et al .
Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study.
Gastroenterology.
1989;
96
981-988
215
McFarland L V, Elmer G W, Surawicz C M.
Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease.
Am J Gastroenterol.
2002;
97
1769-1775
216
Surawicz C M, Elmer G W, Speelman P. et al .
Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study.
Gastroenterology.
1989;
96
981-988
217
McFarland L V, Surawicz C M, Greenberg R N. et al .
A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease.
JAMA.
1994;
271
1913-1918
218
Qamar A, Aboudola S, Warny M. et al .
Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice.
Infect Immun.
2001;
69
2762-2765
219
Guslandi M, Mezzi G, Sorghi M. et al .
Saccharomyces boulardii in maintenance treatment of Crohn’s disease.
Dig Dis Sci.
2000;
45
1462-1464
220
Gionchetti P, Rizzello F, Venturi A. et al .
Antibiotic combination therapy in patients with chronic, treatment-resistant pouchitis.
Aliment Pharmacol Ther.
1999;
13
713-718
221
Gionchetti P, Rizzello F, Venturi A. et al .
Probiotics in infective diarrhoea and inflammatory bowel diseases.
J Gastroenterol Hepatol.
2000;
15
489-493
222
Clausen M R, Mortensen P B.
Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis.
Gut.
1995;
37
684-689
223
Hove H, Mortensen P B.
Short-chain fatty acids in the non-adapted and adapted pelvic ileal pouch.
Scand J Gastroenterol.
1996;
31
568-574
224
Patz J, Jacobsohn W Z, Gottschalk-Sabag S. et al .
Treatment of refractory distal ulcerative colitis with short chain fatty acid enemas.
Am J Gastroenterol.
1996;
91
731-734
225
Scheppach W.
Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group.
Dig Dis Sci.
1996;
41
2254-2259
226
Steinhart A H, Brzezinski A, Baker J P.
Treatment of refractory ulcerative proctosigmoiditis with butyrate enemas.
Am J Gastroenterol.
1994;
89
179-183
227
Vernia P, Marcheggiano A, Caprilli R. et al .
Short-chain fatty acid topical treatment in distal ulcerative colitis.
Aliment Pharmacol Ther.
1995;
9
309-313
228
Aguilar-Nascimento J E, Franca-da-Silva L R, De Oliveira A F. et al .
Enhanced mucosal re-epithelialization induced by short chain fatty acids in experimental colitis.
Braz J Med Biol Res.
1999;
32
961-966
229
Scheppach W, Muller J G, Boxberger F. et al .
Histological changes in the colonic mucosa following irrigation with short-chain fatty acids.
Eur J Gastroenterol Hepatol.
1997;
9
163-168
230
Araki Y, Andoh A, Fujiyama Y. et al .
In vitro alterations in fecal short chain fatty acids and organic anions induced by the destruction of intestinal microflora under hypotonic and aerobic conditions.
Int J Mol Med.
2002;
9
627-631
231
Bianchi-Salvadori B, Vesely R, Ferrari A. et al .
Behaviour of the pharmaceutical probiotic preparation VSL#3 in human ileostomy effluent containing its own natural elements.
New Microbiol.
2001;
24
23-33
232
Munkholm L P, Rasmussen D, Ronn B. et al .
Elemental diet: a therapeutic approach in chronic inflammatory bowel disease.
J Intern Med.
1989;
225
325-331
233
Okada M, Yao T, Yamamoto T. et al .
Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease.
Hepatogastroenterology.
1990;
37
72-80
234
O’Brien C J, Giaffer M H, Cann P A. et al .
Elemental diet in steroid-dependent and steroid-refractory Crohn’s disease.
Am J Gastroenterol.
1991;
86
1614-1618
235
Teahon K, Smethurst P, Pearson M. et al .
The effect of elemental diet on intestinal permeability and inflammation in Crohn’s disease.
Gastroenterology.
1991;
101
84-89
236
Fujita T, Sakurai K.
Efficacy of glutamine-enriched enteral nutrition in an experimental model of mucosal ulcerative colitis.
Br J Surg.
1995;
82
749-751
237
Zoli G, Care M, Parazza M. et al .
A randomized controlled study comparing elemental diet and steroid treatment in Crohn’s disease.
Aliment Pharmacol Ther.
1997;
11
735-740
238
Ikeuchi H, Kusunoki M, Yanagi H. et al .
Effects of elemental diet (ED) on surgical treatment in Crohn’s disease.
Hepatogastroenterology.
2000;
47
390-392
239
Verma S, Kirkwood B, Brown S. et al .
Oral nutritional supplementation is effective in the maintenance of remission in Crohn’s disease.
Dig Liver Dis.
2000;
32
769-774
240
Zachos M, Tondeur M, Griffiths A M.
Enteral nutritional therapy for inducing remission of Crohn’s disease.
Cochrane Database Syst Rev.
2001;
CD000542
241
Bailey C J, Hembry R M, Alexander A. et al .
Metalloproteinases in the intestine of patients with Crohn’s disease.
Biochem Soc Trans.
1990;
18
896-897
242
Bailey C J, Hembry R M, Alexander A. et al .
Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn’s disease and normal intestine.
J Clin Pathol.
1994;
47
113-116
243
Saarialho-Kere U K, Vaalamo M, Puolakkainen P. et al .
Enhanced expression of matrilysin, collagenase, and stromelysin-1 in gastrointestinal ulcers.
Am J Pathol.
1996;
148
519-526
244
Vaalamo M, Karjalainen-Lindsberg M L, Puolakkainen P. et al .
Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal ulcerations.
Am J Pathol.
1998;
152
1005-1014
245
Baugh M D, Perry M J, Hollander A P. et al .
Matrix metalloproteinase levels are elevated in inflammatory bowel disease.
Gastroenterology.
1999;
117
814-822
246
Kossakowska A E, Medlicott S A, Edwards D R. et al .
Elevated plasma gelatinase A (MMP-2) activity is associated with quiescent Crohn’s Disease.
Ann N Y Acad Sci.
1999;
878
578-580
247
Heuschkel R B, MacDonald T T, Monteleone G. et al .
Imbalance of stromelysin-1 and TIMP-1 in the mucosal lesions of children with inflammatory bowel disease.
Gut.
2000;
47
57-62
248
Arihiro S, Ohtani H, Hiwatashi N. et al .
Vascular smooth muscle cells and pericytes express MMP-1, MMP-9, TIMP-1 and type I procollagen in inflammatory bowel disease.
Histopathology.
2001;
39
50-59
249
Di Sebastiano P, di Mola F F, Artese L. et al .
Beneficial effects of Batimastat (BB-94), a matrix metalloproteinase inhibitor, in rat experimental colitis.
Digestion.
2001;
63
234-239
250
Gan X, Wong B, Wright S D. et al .
Production of matrix metalloproteinase-9 in CaCO-2 cells in response to inflammatory stimuli.
J Interferon Cytokine Res.
2001;
21
93-98
251
Ohkawara T, Nishihira J, Takeda H. et al .
Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice.
Gastroenterology.
2002;
123
256-270
252
Rachmilewitz D, Karmeli F, Takabayashi K. et al .
Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis.
Gastroenterology.
2002;
122
1428-1441
253
Medina C, Videla S, Radomski A. et al .
Increased activity and expression of matrix metalloproteinase-9 in a rat model of distal colitis.
Am J Physiol Gastrointest Liver Physiol.
2003;
284
G116-G122
254
Lewis J D, Lichtenstein G R, Stein R B. et al .
An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis.
Am J Gastroenterol.
2001;
96
3323-3328
255 Spiegelberg H L, Raz E. DNA based immunotherapeutics for allergy. Frankfurt am Main; Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe 1999: 283-290
256
Chu W, Gong X, Li Z. et al .
DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA.
Cell.
2000;
103
909-918
257
Cho J Y, Miller M, Baek K J. et al .
Immunostimulatory DNA sequences inhibit respiratory syncytial viral load, airway inflammation, and mucus secretion.
J Allergy Clin Immunol.
2001;
108
697-702
258
Hayashi T, Rao S P, Takabayashi K. et al .
Enhancement of innate immunity against Mycobacterium avium infection by immunostimulatory DNA is mediated by indoleamine 2,3-dioxygenase.
Infect Immun.
2001;
69
6156-6164
259
Horner A A, Van Uden J H, Zubeldia J M. et al .
DNA-based immunotherapeutics for the treatment of allergic disease.
Immunol Rev.
2001;
179
102-118
260
Joseph A, Louria-Hayon I, Plis-Finarov A. et al .
Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines.
Vaccine.
2002;
20
3342-3354
Priv.-Doz. Dr. Axel Dignass Dr. Daniel C. Baumgart
Univ.-Klinikum Charité, Campus Virchow-Klinikum, Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie
13344 Berlin
Email: daniel.baumgart@charite.de