Growing evidence suggests that cellular cholesterol homeostasis is causally involved
in different steps leading to pathological events in the brain of Alzheimer’s Disease
(AD) patients. It was previously demonstrated that the processing of the amyloid beta-peptide
precursor protein (APP) is modulated by pronounced alterations in cellular cholesterol
levels using statins or cholesterol extracting agents. However, a cholesterol-rich
diet was found to enhance amyloid beta-peptide (Aβ) burden in the brain of transgenic
mice without clearly affecting total brain cholesterol levels. Recent retrospective epidemiological
studies have reported that the use of statins potentially suppresses the development
of AD. Although some HMG-CoA reductase inhibitors seem to influence the central cholesterol
pool in vivo, the above epidemiological findings are probably not linked to statin-induced changes
in brain membrane cholesterol levels per se since not all statins active in preventing AD enter the central nervous system (CNS).
Recently, we reported that different statins, regardless of their brain availability,
induce alterations in cellular cholesterol distribution in the brain. Such pleiotropic,
cholesterol-synthesis independent statin effects might be indirect and are possibly
mediated at the blood-brain barrier (BBB) via nitric oxide (NO) or apolipoprotein
E (ApoE).
Abbreviations
Aβ:amyloid beta-peptide
AD:Alzheimer’s disease
ApoE:apolipoprotein E
APP3:amyloid beta-peptide precursor protein
BBB:blood-brain barrier
CHD:coronary heart disease
CHOD-PAP-cholesteroloxidase-peroxidase-aminophenazon-method:phenol-method
CNS:central nervous system
CSF:cerebrospinal fluid
DHE:dehydroergosterol
ER :endoplasmatic reticulum
HMG-CoA:hydroxymethylglutaryl-coenzyme A
MβCD:methyl-beta-cyclodextrin
NO:nitric oxide
NOs:nitric oxide synthase
PUFA:polyunsaturated fatty acid
SMC:smooth muscle cell
SPM:synaptosomal plasma membrane
SUV:small unilammelar vesicle
TNBS:trinitrobenzensulfonic acid
Key words
Cholesterol - Statins - Brain - Membrane - Alzheimer's Disease
References
- 1
Auerbach B J, Parks J S, Applebaum-Bowden D.
A rapid and sensitive micro-assay for the enzymatic determination of plasma and lipoprotein
cholesterol.
J Lipid Res.
1990;
31
738-742
- 2
Bellosta S, Ferri N, Bernini F, Paoletti R, Corsini A.
Non-lipid-related effects of statins.
Ann Med.
2000;
32
164-176
- 3
Bjorkhem I, Lütjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J.
Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence
for a cerebral origin of most of this oxysterol in the circulation.
J Lipid Res.
1998;
39
1594-1600
- 4
Bodovitz S, Klein W L.
Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein.
J Biol Chem.
1996;
271
4436-4440
- 5
Botti R E, Triscari J, Pan H Y, Zayat J.
Concentrations of pravastatin and lovastatin in cerebrospinal fluid in healthy subjects.
Clin Neuropharmacol.
1991;
14
256-261
- 6
Colton C A, Brown C M, Czapiga M, Vitek M P.
Apolipoprotein-E allele-specific regulation of nitric oxide production.
Ann N Y Acad Sci.
2002;
962
212-225
- 7
Corsini A, Bernini F, Quarato P, Donetti E, Bellosta S, Fumagalli R, Paoletti R, Soma V M.
Non-lipid-related effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.
Cardiology.
1996;
87
458-468
- 8
Das U N.
Essential fatty acids as possible mediators of the actions of statins.
Prostaglandins Leukot Essent Fatty Acids.
2001;
65
37-40
- 9
Das U N.
Nitric oxide as the mediator of the antiosteoporotic actions actions of estrogen,
statins and essential fatty acids.
Exp Biol Med.
2002;
227
88-93
- 10
Dietschy J M, Turley S D.
Cholesterol metabolism in the brain.
Curr Opin Lipidol.
2001;
12
105-112
- 11
Eckert G P, Igbavboa U, Müller W E, Wood W G.
Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent
reveal different lipid and protein domains.
Brain Res.
2003;
962
144-150
- 12
Eckert G P, Kirsch C, Mueller W E.
Differential effects of lovastatin treatment on brain cholesterol levels in normal
and ApoE-deficient mice.
Neuroreport.
2001;
12
883-887
- 13
Eckert G P, Wood W G, Muller W E.
Effects of aging and beta-amyloid on the properties of brain synaptic and mitochondrial
membranes.
J Neural Transm.
2001;
108
1051-1064
- 14
Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz M A, Liao J K.
Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated
by endothelial nitric oxide synthase.
Proc Natl Acad Sci USA.
1998;
95
8880-8885
- 15
Fassbender K, Simons M, Bergmann C, Stroick M, Lütjohann D, Keller P, Runz H, Kuhl S,
Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T.
Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta
42 and Abeta 40 in vitro and in vivo.
Proc Natl Acad Sci USA.
2001;
98
5856-5861
- 16
Fassbender K, Stroick M, Bertsch T, Ragoschke A, Kuehl S, Walter S, Walter J, Brechtel K,
Muehlhauser F, von Bergmann K, Lütjohann D.
Effects of statins on human cerebral cholesterol metabolism and secretion of Alzheimer
amyloid peptide.
Neurology.
2002;
59
1257-1258
- 17
Feron O, Dessy C, Desager J P, Balligand J L.
Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric
oxide synthase activation through a decrease in caveolin abundance.
Circulation.
2001;
103
113-118
- 18
Frears E R, Stephens D J, Walters C E, Davies H, Austen B M.
The role of cholesterol in the biosynthesis of beta-amyloid.
Neuroreport.
1999;
10
1699-1705
- 19
Gimpl G, Burger K, Fahrenholz F.
Cholesterol as modulator of receptor function.
Biochemistry.
1997;
36
10 959-10 974
- 20
Glomset J A, Farnsworth C C.
Role of protein modification reactions in programming interactions between ras-related
GTPases and cell membranes.
Annu Rev Cell Biol.
1994;
10
181-205
- 21
Golde T E, Eckman C B.
Cholesterol modulation as an emerging strategy for the treatment of Alzheimer's disease.
Drug Discov Today.
2001;
6
1049-1055
- 22
Gong J S, Sawamura N, Zou K, Sakai J, Yanagisawa K, Michikawa M.
Amyloid β-protein affects cholesterol metabolism in cultured neurons: Implications
for a pivotal role of cholesterol in the amyloid cascade.
J Neurosci Res.
2002;
70
438-446
- 23
Hajjar I, Schumpert J, Hirth V, Wieland D, Eleazer G P.
The impact of the use of statins on the prevalence of dementia and the progression
of cognitive impairment.
J Gerontol: Medical Sciences.
2002;
7
M414-418
- 24
Hamelin B A, Turgeon J.
Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects
of HMG-CoA reductase inhibitors.
Trends Pharmacol Sci.
1998;
19
26-37
- 25
Hayashi H, Igbavboa U, Hamanaka H, Kobayashi M, Fujita S C, Wood W G, Yanagisawa K.
Cholesterol is increased in the exofacial leaflet of synaptic plasma membranes of
human apolipoprotein E4 knock-in mice.
Neuroreport.
2002;
13
383-386
- 26
Igbavboa U, Avdulov N A, Chochina S V, Wood W G.
Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes
of knockout mice deficient in the low-density lipoprotein receptor, apolipoprotein
E, or both proteins.
J Neurochem.
1997;
69
1661-1667
- 27
Igbavboa U, Avdulov N A, Schroeder F, Wood W G.
Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic
plasma membranes of mice.
J Neurochem.
1996;
66
1717-1725
- 28
Igbavboa U, Hamilton J, Kim H Y, Sun G Y, Wood W G.
A new role for apolipoprotein E: modulating transport of polyunsaturated phospholipid
molecular species in synaptic plasma membranes.
J Neurochem.
2002;
80
255-261
- 29
Jick H, Zornberg G L, Jick S S, Seshadri S, Drachman D A.
Statins and the risk of dementia.
Lancet.
2000;
356
1627-1631
- 30
Kabouridis P S, Janzen J, Magee A L, Ley S C.
Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple
signaling pathways in T lymphocytes.
Eur J Immunol.
2000;
30
954-963
- 31
Kim H J, Miyazaki M, Man W C, Ntambi J M.
Sterol regulatory element-binding proteins (SREBPs) as regulators of lipid metabolism:
polyunsaturated fatty acids oppose cholesterol-mediated induction of SREBP-1 maturation.
Ann N Y Acad Sci.
2002;
967
34-42
- 32
Kirsch C, Eckert G P, Müller W E.
Cholesterol attenuates the membrane perturbing properties of β-amyloid peptides.
Amyloid.
2002;
9
149-159
- 33
Kirsch C, Eckert G P, Müller W E.
Statin effects on cholesterol micro-domains in brain plasma membranes.
Biochem Pharmacol.
2003;
65
843-856
- 34
Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F.
Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase
ADAM 10.
Proc Natl Acad Sci USA.
2001;
98
5815-5820
- 35
Komai T, Shigehara E, Tokui T, Koga T, Ishigami M, Kuroiwa C, Horiuchi S.
Carrier-mediated uptake of pravastatin by rat hepatocytes in primary culture.
Biochem Pharmacol.
1992;
43
667-670
- 36 Koudinov A R, Koudinova N V. Brain cholesterol pathology is the cause of Alzheimer’s
disease. Clin Med Health Res 2001; clinmed/2 001 100 005 ePub available at: http://clinmed.netprints.org/cgi/content/full/2001100005v1
- 37
Koudinov A R, Koudinova N V.
Essential role of cholesterol in synaptic plasticity and neuronal degeneration.
FASEB J.
2001;
15
1858-1860
- 38
Liscum L, Munn N J.
Intracellular cholesterol transport.
Biochim Biophys Acta.
1999;
1438
19-37
- 39
Locatelli S, Lutjohann D, Schmidt H H, Otto C, Beisiegel U, von Bergmann K.
Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage
simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects
cholesterol metabolism in the human brain.
Arch Neurol.
2002;
59
213-216
- 40
Lousberg T R, Denham A M, Rasmussen J R.
A comparison of clinical outcome studies among cholesterol-lowering agents.
Ann Pharmacother.
2001;
35
1599-1607
- 41
MacDonald A G, Wahle K W, Cossins A R, Behan M K.
Temperature, pressure and cholesterol effects on bilayer fluidity; a comparison of
pyrene excimer/monomer ratios with the steady-state fluorescence polarization of diphenylhexatriene
in liposomes and microsomes.
Biochim Biophys Acta.
1988;
938
231-242
- 42
Maltese W A.
Posttranslational modification of proteins by isoprenoids in mammalian cells.
Faseb J.
1990;
4
3319-3328
- 43
Meresse S, Delbart C, Fruchart J C, Cecchelli R.
Low-density lipoprotein receptor on endothelium of brain capillaries.
J Neurochem.
1989;
53
340-345
- 44
Petanceska S S, DeRosa S, Olm V, Diaz N, Sharma A, Thomas-Bryant T, Duff K, Pappolla M,
Refolo L M.
Statin therapy for Alzheimer’s disease. Will it work.
J Mol Neurosci.
2002;
19
155-161
- 45
Puglielli L, Konopka G, Pack-Chung E, Ingano L A, Berezovska O, Hyman B T, Chang T Y,
Tanzi R E, Kovacs D M.
Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid
beta-peptide.
Nat Cell Biol.
2001;
3
905-912
- 46
Refolo L M, Pappolla M A, LaFrancois J, Malester B, Schmidt S D, Thomas-Bryant T,
Tint G S, Wang R, Mercken M, Petanceska S S, Duff K E.
A Cholesterol-Lowering Drug Reduces beta-Amyloid Pathology in a Transgenic Mouse Model
of Alzheimer"s Disease.
Neurobiol Dis.
2001;
8
890-899
- 47
Refolo L M, Pappolla M A, Malester B, LaFrancois J, Schmidt S D, Thomas-Bryant T,
Wang R, Tint G S, Sambamurti K, Duff K.
Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic
mouse model.
Neurobiol Dis.
2000;
7
321-331
- 48
Riddell D R, Christie G, Hussain I, Dingwall C.
Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar
lipid rafts.
Curr Biol.
2001;
11
1288-1293
- 49
Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreuther K, Pepperkok R, Hartmann T.
Inhibition of intracellular cholesterol transport alters presenilin localization and
amyloid precursor protein processing in neuronal cells.
J Neurosci.
2002;
22
1679-1689
- 50
Saheki A, Terasaki T, Tamai I, Tsuji A.
In vivo and in vitro blood-brain barrier transport of 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase inhibitors.
Pharm Res.
1994;
11
305-311
- 51
Schroeder F, Frolov A A, Murphy E J, Atshaves B P, Jefferson J R, Pu L, Wood W G,
Foxworth W B, Kier A B.
Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol
trafficking.
Proc Soc Exp Biol Med.
1996;
213
150-177
- 52
Schroeder F, Gallegos A M, Atshaves B P, Storey S M, McIntosh A L, Petrescu A D, Huang H,
Starodub O, Chao H, Yang H, Frolov A, Kier A B.
Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol
trafficking.
Exp Biol Med (Maywood).
2001;
226
873-890
- 53
Schroeder F, Kier A B, Sweet W D.
Role of polyunsaturated fatty acids and lipid peroxidation in LM fibroblast plasma
membrane transbilayer structure.
Arch Biochem Biophys.
1990;
276
55-64
- 54
Schroeder F, Nemecz G, Wood W G, Joiner C, Morrot G, Ayraut-Jarrier M, Devaux P F.
Transmembrane distribution of sterol in the human erythrocyte.
Biochim Biophys Acta.
1991;
1066
183-192
- 55 Sidera C, Frimpong-Manso J, Liu C, Austen B M. The role of cholesterol in the processing
of beta-secretase Asp-2. In: Proceedings of the 2nd International Congress on Vascular Dementia, Salzburg, Austria. (Ed by Amos D. Korczyn)
Monduzzi Editore. International Proceedings Division 2002: pp. 147-153
- 56
Simons K, Ehehalt R.
Cholesterol, lipid rafts, and disease.
J Clin Invets.
2002;
110
597-603
- 57
Simons K, Ikonen E.
How cells handle cholesterol.
Science.
2000;
290
1721-1726
- 58
Simons M, Keller P, De Strooper B, Beyreuther K, Dotti C G, Simons K.
Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons.
Proc Natl Acad Sci USA.
1998;
95
6460-6464
- 59
Skoog I.
Vascular aspects in Alzheimer"s disease.
J Neural Transm Suppl.
2000;
59
37-43
- 60
Spector A A.
Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for
the brain.
J Mol Neurosci.
2001;
16
159-165
- 61
Stulnig T M, Huber J, Leitinger N, Imre E M, Angelisova P, Nowotny P, Waldhausl W.
Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering
raft lipid composition.
J Biol Chem.
2001;
276
37 335-37 340
- 62
Takemoto M, Liao J K.
Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors.
Arterioscler Thromb Vasc Biol.
2001;
21
1712-1719
- 63
Tun H, Marlow L, Pinnix I, Kinsey R, Sambamurti K.
Lipid rafts play an important role in A beta biogenesis by regulating the beta-secretase
pathway.
J Mol Neurosci.
2002;
19
31-35
- 64
Volpe J J, Goldberg R I, Bhat N R.
Cholesterol biosynthesis and its regulation in dissociated cell cultures of fetal
rat brain: developmental changes and the role of 3- hydroxy-3-methylglutaryl coenzyme
A reductase.
J Neurochem.
1985;
45
536-543
- 65
Wahrle S, Das P, Nyborg A C, McLendon C, Shoji M, Kawarabayashi T, Younkin L H, Younkin S G,
Golde T E.
Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane
microdomains.
Neurobiol Dis.
2002;
9
11-23
- 66
Wolozin B, Kellman W, Rousseau P, Celesia G G, Siegel G.
Decreased prevalence of alzheimer disease associated with 3-hydroxy-3-methyglutaryl
coenzyme A reductase inhibitors.
Arch Neurol.
2000;
57
1439-1443
- 67
Wolozin B.
A fluid connection: cholesterol and A beta.
Proc Natl Acad Sci USA.
2001;
98
5371-5373
- 68
Wolozin B.
Cholesterol and Alzheimer's disease.
Biochem Soc Trans.
2002;
30
525-529
- 69
Wood W G, Schroeder F, Igbavboa U, Avdulov N A, Chochina S V.
Brain membrane cholesterol domains, aging and amyloid beta-peptides.
Neurobiol Aging.
2002;
23
685-694
- 70
Yanagisawa K.
Cholesterol and pathological processes in Alzheimer’s Disease.
J Neurosci Res.
2002;
70
361-366
- 71
Yao Z X, Papadopoulos V.
Function of β-amyloid in cholesterol transport: a lead to neurotoxicity.
FASEB J.
2002;
16
1677-1679
Walter E. Müller
Department of Pharmacology
Biocenter Niederursel
Phone: +49-69-79829376
Fax: +49-69-79829374
Email: PharmacolNat@em.uni-frankfurt.de