References
<A NAME="RG26703ST-1A">1a</A>
Olson GL.
Bolin DR.
Bonner MP.
Bös M.
Cook CM.
Fry DC.
Graves BJ.
Hatada M.
Hill DE.
Kahn M.
Madison VS.
Rusiecki VK.
Sarabu R.
Sepinwall J.
Vincent GP.
Voss ME.
J. Med. Chem.
1993,
36:
3039
<A NAME="RG26703ST-1B">1b</A>
Gante J.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1699
<A NAME="RG26703ST-2A">2a</A>
Peptide Secondary Structure Mimetics In Tetrahedron Symposia-in-Print
Vol. 49:
Kahn M.
Elsevier;
Amsterdam:
1993.
p.3433-3689
<A NAME="RG26703ST-2B">2b</A>
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789 ; and references cited therein
<A NAME="RG26703ST-3A">3a</A>
Halab L.
Gosselin F.
Lubell WD.
Biopolymers
2000,
55:
101
<A NAME="RG26703ST-3B">3b</A>
Dietrich E.
Lubell WD.
J. Org. Chem.
2003,
68:
6988
<A NAME="RG26703ST-4A">4a</A>
Gillespie P.
Cicariello J.
Olson GL.
Biopolymers
1997,
43:
191
<A NAME="RG26703ST-4B">4b</A>
Takeuchi Y.
Marshall GR.
J. Am. Chem. Soc.
1998,
120:
5363
<A NAME="RG26703ST-4C">4c</A>
Belvisi L.
Bernardi A.
Manzoni L.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
2000,
2563
<A NAME="RG26703ST-5A">5a</A>
Lombart H.-G.
Lubell WD.
J. Org. Chem.
1994,
59:
6147
<A NAME="RG26703ST-5B">5b</A>
Lombart H.-G.
Lubell WD.
J. Org. Chem.
1996,
61:
9437
<A NAME="RG26703ST-6A">6a</A>
Polyak F.
Lubell WD.
J. Org. Chem.
2001,
66:
1171
<A NAME="RG26703ST-6B">6b</A>
Feng Z.
Lubell WD.
J. Org. Chem.
2001,
66:
1181
<A NAME="RG26703ST-6C">6c</A>
Artale E.
Banfi G.
Belvisi L.
Colombo L.
Colombo M.
Manzoni L.
Scolastico C.
Tetrahedron
2003,
59:
6241
<A NAME="RG26703ST-7A">7a</A>
Hruby VJ.
Li G.
Haskell-Luevano C.
Shenderovich M.
Biopolymers
1997,
43:
219
<A NAME="RG26703ST-7B">7b</A>
Wang W.
Yang J.
Ying J.
Xiong C.
Zhang J.
Cai C.
Hruby VJ.
J. Org. Chem.
2002,
67:
6353
<A NAME="RG26703ST-8A">8a</A>
Gosselin F.
Lubell WD.
J. Org. Chem.
1998,
63:
7463
<A NAME="RG26703ST-8B">8b</A>
Angiolini M.
Araneo S.
Belvisi L.
Cesarotti E.
Checchia A.
Crippa L.
Manzoni L.
Scolastico C.
Eur. J. Org. Chem.
2000,
2571
<A NAME="RG26703ST-8C">8c</A>
Gosselin F.
Lubell WD.
J. Org. Chem.
2000,
65:
2163
<A NAME="RG26703ST-9A">9a</A>
Haubner R.
Schmitt W.
Hölzemann G.
Goodman SL.
Jonczyk A.
Kessler H.
J. Am. Chem. Soc.
1996,
118:
7881
<A NAME="RG26703ST-9B">9b</A>
Belvisi L.
Bernardi A.
Checchia A.
Manzoni L.
Potenza D.
Scolastico C.
Castorina M.
Cupelli A.
Giannini G.
Carminati P.
Pisano C.
Org. Lett.
2001,
3:
1001
<A NAME="RG26703ST-9C">9c</A>
Marinelli L.
Lavecchia A.
Gottschalk K.-E.
Novellino E.
Kessler H.
J. Med. Chem.
2003,
46:
4393
<A NAME="RG26703ST-10A">10a</A>
Haubner R.
Finsinger D.
Kessler H.
Angew. Chem. Int. Ed.
1997,
36:
1374
<A NAME="RG26703ST-10B">10b</A>
Gottschalk K.-E.
Kessler H.
Angew. Chem. Int. Ed.
2002,
41:
3767
<A NAME="RG26703ST-10C">10c</A>
Hynes RO.
Nature Med.
2002,
8:
918
<A NAME="RG26703ST-11">11</A> Another class of conformationally constrained polyhydroxylated dipeptides has
been recently described, see:
Tremmel P.
Brand J.
Knapp V.
Geyer A.
Eur. J. Org. Chem.
2003,
878
<A NAME="RG26703ST-12">12</A>
Arap W.
Pasqualini R.
Ruoslahti E.
Science
1998,
279:
377
Compound 6 was prepared in gram scale quantities by stereoselective addition of 2-lithiothiazole
to the nitrone derived from d-arabinose 5 followed by dehydroxylation of the resulting open-chain hydroxylamine and cyclization
by intramolecular nitrogen-carbon bond formation via SN2 process. See:
<A NAME="RG26703ST-13A">13a</A>
Dondoni A.
Perrone D.
Tetrahedron Lett.
1999,
40:
9375
<A NAME="RG26703ST-13B">13b</A>
Dondoni A.
Giovannini P.
Perrone D.
J. Org. Chem.
2002,
62:
7203
<A NAME="RG26703ST-14">14</A>
Compound 7. [α]D = +22.2 (c 1.2, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 7.74 (d, J = 3.3 Hz, 1 H, Th), 7.32-7.14 (m, 16 H, 3 × Ph, Th), 4.68, 4.50 (2 × d, 2 H, J = 11.7 Hz, PhCH
2O), 4.58, 4.46 (2 × d, J = 11.7 Hz, 2 H, PhCH
2O), 4.44 (d, J
2,3 = 4.8 Hz, 1 H, H-2), 4.27 (dd, J
3,4 = 4.5 Hz, 1 H, H-3), 4.16 (dd, J
4,5 = 6.6 Hz, 1 H, H-4), 4.01, 3.82 (2 × d, J = 13.7 Hz, 2 H, PhCH
2N), 3.63 (dd, J
5,6 = 4.5 Hz, J
6,OH = 6.3 Hz, 2 H, 2 × H-6), 3.34 (dt, 1 H, H-5), 2.65 (t, 1 H, OH). Compound 8. [α]D = +35.5 (c 0.5, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.68 (d, J = 3.3 Hz, 1 H, Th), 7.38-7.17, 7.00-6.96 (2 × m, 16 H, 3 × Ph, Th), 6.81-6.72 (m,
4 H, MeOPh), 4.69, 4.54 (2 × d, J = 11.8 Hz, 2 H, PhCH
2O), 4.46 (d, J
2,3 = 2.5 Hz, 1 H, H-2), 4.37, 4.31 (2 × d, J = 11.9 Hz, 2 H, PhCH
2O), 4.29 (dd, J
3,4 = 2.3 Hz, 1 H, H-3), 4.17 (dd, J
5,6a = 7.1 Hz, J
6a,6b = 9.0 Hz, 1 H, H-6a), 4.12 (dd, J
4,5 = 5.6 Hz, 1 H, H-4), 4.08, 3.99 (2 × d, J = 13.6 Hz, 2 H, PhCH
2N), 3.92 (dd, J
5,6b = 5.1 Hz, 1 H, H-6b), 3.77 (s, 3 H, Me), 3.67 (ddd, 1 H, H-5). Compound 9. [α]D = +2.5 (c 0.6, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 9.30 (d, J = 1.3 Hz, 1 H, CHO), 7.40-7.20, 7.16-7.11 (2 × m, 15 H, 3 × Ph), 6.84 (s, 4 H, MeOPh), 4.59, 4.51 (2 × d, J = 11.8 Hz, 2 H, PhCH
2O), 4.44, 4.28 (2 × d, J = 11.7 Hz, 2 H, PhCH
2O), 4.29 (dd, J
5,6a = 7.7 Hz, J
6a,6b = 9.3 Hz, 1 H, H-6a), 4.27, 3.76 (2 × d, J = 13.2 Hz, 2 H, PhCH
2N), 4.11 (dd, J
2,3 = 1.2 Hz, J
3,4 = 1.5 Hz, 1 H, H-3), 4.10 (dd, J
4,5 = 4.3 Hz, 1 H, H-4), 4.09 (dd, J
5,6b = 5.3 Hz, 1 H, H-6b), 3.78 (s, 3 H, Me), 3.68 (ddd, 1 H, H-5), 3.38 (dd, 1 H, H-2).
13C NMR (100 MHz, CDCl3): δ = 204.7 (C-1), 153.9, 153.0, 115.4, 114.6 (MeOPh), 138.8, 137.5, 137.4, 129.1-127.5 (3 × Ph), 84.2 (C-3), 80.0 (C-4), 76.2 (C-2),
71.8 (PhCH2O), 71.4 (PhCH2O), 67.2 (C-6), 66.2 (C-5), 60.7 (PhCH2N), 55.8 (MeO).
<A NAME="RG26703ST-15">15</A>
Dondoni A.
Marra A.
Scherrmann M.-C.
Bertolasi V.
Chem.-Eur. J.
2001,
7:
1371
<A NAME="RG26703ST-16">16</A>
Schmidt U.
Lieberknecht A.
Wild J.
Synthesis
1984,
53
<A NAME="RG26703ST-17">17</A>
Compound 11. [α]D = -8.7 (c 0.8, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.34-7.18 (m, 20 H, 4 × Ph), 7.08 (br s, 1 H, NH), 6.81-6.72 (m, 4 H, MeOPh), 6.21 (d, J = 8.2 Hz, 1 H, CH=), 5.09, 5.01 (2 × d, J = 12.3 Hz, 2 H, PhCH
2OCO), 4.51, 4.46 (2 × d, J = 11.8 Hz, 2 H, PhCH
2O), 4.45 (s, 2 H, PhCH
2O), 4.12 (dd, J
5,6a = 7.2 Hz, J
6a,6b = 9.4 Hz, 1 H, H-6a), 4.04 (dd, J
3,4 = 3.0 Hz, J
4,5 = 5.8 Hz, 1 H, H-4), 3.92 (dd,
J
5,6b = 4.7 Hz, 1 H, H-6b), 3.89, 3.80 (2 × d, J = 13.6 Hz,
2 H, PhCH
2N), 3.89 (dd, J
2,3 = 4.8 Hz, 1 H, H-3), 3.78, 3.71 (2 × s, 6 H, 2 × Me), 3.56 (dd, 1 H, H-2), 3.44 (ddd,
1 H, H-5). Compound 13. [α]D = -45.3 (c 0.4, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 6.86-6.79 (m, 4 H, MeOPh), 5.50 (dd, J
6,7 = J
7,8 = 7.7 Hz, 1 H, H-7), 5.19 (dd, J
5,6 = 7.3 Hz, 1 H, H-6), 4.94 (br d, J
3,NH = 5.5 Hz, 1 H, NH), 4.75 (dd,
J
8,9a = 3.9, J
9a,9b = 10.0 Hz, 1 H, H-9a), 4.44 (dd, J
3,4a = 6.9 Hz, J
3,4b = 12.1 Hz, 1 H, H-3), 4.28 (ddd, J
8,9b = 1.0 Hz, 1 H, H-8), 3.87 (dd, 1 H, H-9b), 3.76 (s, 3 H, Me), 3.64 (dd,
J
4a,5 = 5.3 Hz, J
4b,5 = 10.1 Hz, 1 H,, H-5), 2.96 (ddd,
J
4a,4b = 11.8 Hz, 1 H, H-4a), 2.10, 2.02 (2 × s, 6 H, 2 × Ac), 1.96 (ddd, 1 H, H-4b), 1.41
(s, 9 H, t-Bu). Compound epi
-13. [α]D = -34.9 (c 0.7, CHCl3). 1H NMR (400 MHz, CDCl3):
δ = 6.85-6.78 (m, 4 H, MeOPh), 5.52 (dd, J
6,7 = 7.8 Hz,
J
7,8 = 7.6 Hz, 1 H, H-7), 5.12 (dd, J
5,6 = 7.6 Hz, 1 H, H-6), 5.04 (br s, 1 H, NH), 4.69 (dd, J
8,9a = 4.6 Hz, J
9a,9b = 10.2 Hz, 1 H, H-9a), 4.28 (ddd, J
8,9b = 1.6 Hz, 1 H, H-8), 4.05-3.97 (m, 2 H, H-3, H-5), 3.94 (dd, 1 H, H-9b), 3.75 (s,
3 H, Me), 2.48 (ddd, J
3,4a = 7.6 Hz, J
4a,4b = 13.6, J
4a,5 = 9.5 Hz, 1 H, H-4a), 2.34 (ddd, J
3,4b = 2.2 Hz, J
4b,5 = 6.8 Hz, 1 H, H-4b), 2.10, 1.99 (2 × s, 6 H, 2 Ac), 1.42 (s, 9 H, t-Bu). Compound 14 Methyl Ester. [α]D =
-63.4 (c 0.3, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 5.61 (dd, J
6,7 = 9.3 Hz, J
7,8 = 8.2 Hz, 1 H, H-7), 5.10 (dd, J
5,6 = 8.4 Hz, 1 H, H-6), 5.08 (br d, J
3,NH = 7.0 Hz, 1 H, NH), 4.58 (d, 1 H, H-8), 4.53 (ddd, J
3,4a = 6.5 Hz, J
3,4b = 12.0 Hz, 1 H, H-3), 3.78 (s, 3 H, Me), 3.69 (ddd, J
4a,5 = 5.4 Hz, J
4b,5 = 9.5 Hz, 1 H, H-5), 3.02 (ddd, J
4a,4b = 12.5 Hz, 1 H, H-4a), 2.16 (ddd, 1 H, H-4b), 2.09, 2.06 (2 × s, 6 H, 2 × Ac), 1.43
(s, 9 H, t-Bu). 13C NMR (100 MHz, CDCl3): δ = 173.4 (Me3COCO), 173.3 (C-2), 170.4, 169.6 (CH3
CO), 167.8 (CO2Me), 80.1 (Me3
C), 75.7 (C-7), 75.3 (C-6), 57.7 (C-5), 56.5 (C-8), 54.3 (C-3), 52.8 (MeO), 38.8 (C-4),
28.3 (Me
3C), 20.6 and 20.3 (CH
3CO).
<A NAME="RG26703ST-18">18</A> Unnatural hetero-bifunctional ligands bearing the sialyl Lewis oligosaccharide
and the RGD peptide sequence have been recently prepared, see:
Matsuda M.
Nishimura S.-I.
Nakajima F.
Nishimura T.
J. Med. Chem.
2001,
44:
715
The LDT-mediated binding between the mucosal addressin cell adhesion molecule-1 (MAdCAM-1)
and its receptor, the α4β7 integrins, is responsible for the lymphocytes recruitment to inflamed colon. Cyclic
peptidomimetics containing the LDT motif are inhibitors of this recognition process
and therefore may lead to a new, organ specific treatment of inflammatory diseases.
<A NAME="RG26703ST-19A">19a</A>
Gottschling D.
Boer J.
Schuster A.
Holzmann B.
Kessler H.
Angew. Chem. Int. Ed.
2002,
41:
3007
<A NAME="RG26703ST-19B">19b</A>
Gottschling D.
Boer J.
Marinelli L.
Voll G.
Haupt M.
Schuster A.
Holzmann B.
Kessler H.
ChemBioChem
2002,
575